Skip to main content
Log in

Vortex Rings in Fast Rotating Bose–Einstein Condensates

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

When Bose–Einstein condensates are rotated sufficiently fast, a giant vortex phase appears, that is, the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper (Correggi et al. in Commun Math Phys 303:451–308, 2011) we have studied this phenomenon by minimizing the two-dimensional Gross–Pitaevskii (GP) energy on the unit disc. In particular, we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold, there are vortices in the condensate. We prove that they gather along a particular circle on which they are uniformly distributed. This is done by providing new upper and lower bounds to the GP energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftalion, A.: Vortices in Bose-Einstein Condensates. Progress in Nonlinear Differential Equations and their Applications, vol. 67. Birkhäuser, Basel, 2006

  2. Aftalion A., Alama S., Bronsard L.: Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate. Arch. Ration. Mech. Anal 178, 247–286 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aftalion A., Sandier E., Serfaty S.: Pinning phenomena in the Ginzburg-Landau model of superconductivity. J. Maths Pures Appl 80, 339–372 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alama S., Bronsard L.: Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions. J. Math. Phys 46, 095102 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Alama S., Bronsard L.: Vortices and pinning effects for the Ginzburg–Landau model in multiply connected domains. Commun. Pure Appl. Math 59(1), 36–70 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alama, S., Bronsard, L., Millot, V.: Gamma-convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves. J. Anal. Math. Preprint, arXiv:0906.4862 [math.AP] (2009) (in press)

    Google Scholar 

  7. Béthuel, F., Brézis, H., Hélein, F.: Ginzburg-Landau Vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13., Birkhäuser, Basel, 1994

  8. Bretin V., Stock S., Seurin S., Dalibard J.: Fast rotation of a Bose-Einstein condensate. Phys. Rev. Lett. 92, 050403 (2004)

    Article  ADS  Google Scholar 

  9. Cooper N.R.: Rapidly rotating atomic gases. Adv. Phys 57, 539–616 (2008)

    Article  ADS  Google Scholar 

  10. Correggi M., Pinsker F., Rougerie N., Yngvason J.: Critical rotational speeds in the Gross-Pitaevskii theory on a disc with Dirichlet boundary conditions. J. Stat. Phys 143(2), 261–305 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Correggi M., Rindler-Daller T., Yngvason J.: Rapidly rotating Bose-Einstein condensates in strongly anharmonic traps. J. Math. Phys 48, 042104 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Correggi M., Rindler-Daller T., Yngvason J.: Rapidly rotating Bose-Einstein condensates in homogeneous traps. J. Math. Phys 48, 102103 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Correggi M., Rougerie N., Yngvason J.: The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate. Commun. Math. Phys 303, 451–508 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Correggi M., Yngvason J.: Energy and vorticity in fast rotating Bose-Einstein condensates. J. Phys. A Math. Theor 41, 445002 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fetter A.L.: Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys 81, 647–691 (2009)

    Article  ADS  Google Scholar 

  16. Fetter A.L.: Rotating vortex lattice in a Bose-Einstein condensate trapped in combined quadratic and quartic radial potentials. Phys. Rev. A 64, 063608 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. Fetter A.L., Jackson N., Stringari S.: Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap. Phys. Rev A 71, 013605 (2005)

    Article  ADS  Google Scholar 

  18. Fischer U.R., Baym G.: Vortex states of rapidly rotating dilute Bose-Einstein condensates. Phys. Rev. Lett 90, 140402 (2003)

    Article  ADS  Google Scholar 

  19. Fu H., Zaremba E.: Transition to the giant vortex state in a harmonic-plus-quartic trap. Phys. Rev. A 73, 013614 (2006)

    Article  ADS  Google Scholar 

  20. Ignat R., Millot V.: The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate. J. Funct. Anal 233, 260–306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ignat R., Millot V.: Energy expansion and vortex location for a two dimensional rotating Bose-Einstein condensate. Rev. Math. Phys 18, 119–162 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jerrard R.L., Soner H.M.: The Jacobian and the Ginzburg-Landau energy. Calc. Var. Partial Differ. Equ 14, 524–561 (2002)

    Article  MathSciNet  Google Scholar 

  23. Kachmar A.: Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. ESAIM Cont. Opt. Calc. Var 16, 545–580 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kasamatsu K., Tsubota M., Ueda M.: Giant hole and circular superflow in a fast rotating Bose-Einstein condensate. Phys. Rev. A 66, 050606 (2002)

    Article  Google Scholar 

  25. Kavoulakis G.M., Baym G.: Rapidly rotating Bose-Einstein condensates in anharmonic potentials. New J. Phys 5, 51.1–51.11 (2003)

    Article  Google Scholar 

  26. Kim J.K., Fetter A.L.: Dynamics of a rapidly rotating Bose-Einstein condensate in a harmonic plus quartic trap. Phys. Rev. A 72, 023619 (2005)

    Article  ADS  Google Scholar 

  27. Lassoued L., Mironescu P.: Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math 77, 1–26 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lewin M., Seiringer R.: Strongly correlated phases in rapidly rotating Bose gases. J. Stat. Phys. 137, 1040–1062 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, AMS, Providence, 1997

  30. Littman W., Stampacchia G., Weinberger H.F.: Regular points for elliptic equations with discontinuous coefficients. Annali de la Scuola Normale Superiore di Pisa 17, 43–77 (1963)

    MATH  MathSciNet  Google Scholar 

  31. Meyers N.G.: An L p estimate for the gradient of solutions of second order elliptic divergence equations. Annali de la Scuola Normale Superiore di Pisa 17, 189–206 (1963)

    MATH  MathSciNet  Google Scholar 

  32. Moser J.: On Harnack’s theorem for elliptic differential equations. Commun. Pure Appl. Math 14, 577–591 (1961)

    Article  MATH  Google Scholar 

  33. Rougerie N.: The giant vortex state for a Bose-Einstein condensate in a rotating anharmonic trap: extreme rotation regimes. Journal de Mathématiques Pures et Appliquées 95, 296–347 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Saff E.B., Totik V.: Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenchaften, vol. 316. Springer, Berlin (1997)

    Google Scholar 

  35. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau Model. Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser, Basel, 2007

  36. Stampacchia G.: Le problème de Dirichlet pour leséquations elliptiques du second ordre à coefficients discontinus. Annales de l’Institut Fourier 15, 189–257 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stock S., Bretin V., Chevy F., Dalibard J.: Shape oscillation of a rotating Bose-Einstein condensate. Europhys. Lett 65, 594 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Rougerie.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rougerie, N. Vortex Rings in Fast Rotating Bose–Einstein Condensates. Arch Rational Mech Anal 203, 69–135 (2012). https://doi.org/10.1007/s00205-011-0447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0447-6

Keywords

Navigation