Skip to main content
Log in

Sharp Observability Estimates for Heat Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The goal of this article is to derive new estimates for the cost of observability of heat equations. We have developed a new method allowing one to show that when the corresponding wave equation is observable, the heat equation is also observable. This method allows one to describe the explicit dependence of the observability constant on the geometry of the problem (the domain in which the heat process evolves and the observation subdomain). We show that our estimate is sharp in some cases, particularly in one space dimension and in the multi-dimensional radially symmetric case. Our result extends those in Fattorini and Russell (Arch Rational Mech Anal 43:272–292, 1971) to the multi-dimensional setting and improves those available in the literature, namely those by Miller (J Differ Equ 204(1):202–226, 2004; SIAM J Control Optim 45(2):762–772, 2006; Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 17(4):351–366, 2006) and Tenenbaum and Tucsnak (J Differ Equ 243(1):70–100, 2007). Our approach is based on an explicit representation formula of some solutions of the wave equation in terms of those of the heat equation, in contrast to the standard application of transmutation methods, which uses a reverse representation of the heat solution in terms of the wave one. We shall also explain how our approach applies and yields some new estimates on the cost of observability in the particular case of the unit square observed from one side. We will also comment on the applications of our techniques to controllability properties of heat-type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini G., Escauriaza L.: Null-controllability of one-dimensional parabolic equations. ESAIM Control Optim. Calc. Var. 14(2), 284–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allibert B.: Contrôle analytique de l’équation des ondes sur des surfaces de révolution. C. R. Acad. Sci. Paris Sér. I Math. 322(9), 835–838 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Allibert B.: Analytic controllability of the wave equation over a cylinder. ESAIM Control Optim. Calc. Var. 4, 177–207 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burq N., Burq N., Burq N.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)

    Article  ADS  MATH  Google Scholar 

  6. Castro C., Zuazua E.: Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rational Mech. Anal. 164(1), 39–72 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Chen X.-Y.: A strong unique continuation theorem for parabolic equations. Math. Ann. 311(4), 603–630 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coron J.-M., Guerrero S.: Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component. J. Math. Pures Appl. (9) 92(5), 528–545 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Dáger R., Zuazua E.: Wave propagation, observation and control in 1-d flexible multi-structures. Mathématiques & Applications, Vol. 50. Springer, Berlin (2006)

    Google Scholar 

  10. Ervedoza S., Zuazua E.: A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1375–1401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ervedoza, S., Zuazua, E.: Observability of heat processes by transmutation without geometric restrictions. Math. Control and Related Fields 1(2), (2011)

  12. Fattorini H.O., Russell D.L.: Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal. 43, 272–292 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Fernández-Cara E., Zuazua E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5(4–6), 465–514 (2000)

    MATH  Google Scholar 

  14. Fernández-Cara E., Zuazua E.: On the null controllability of the one-dimensional heat equation with BV coefficients. Comput. Appl. Math. 21(1), 167–190 (2002) Special issue in memory of Jacques-Louis Lions

    MathSciNet  MATH  Google Scholar 

  15. Fursikov A.V., Imanuvilov O.Y.: Controllability of evolution equations. Lecture Notes Series, Vol. 34. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996)

    Google Scholar 

  16. Haraux A.: A generalized internal control for the wave equation in a rectangle. J. Math. Anal. Appl. 153(1), 190–216 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. John F.: Partial Differential Equations. Applied Mathematical Sciences, Vol. 1, 4th edn. Springer, New York (1982)

    Google Scholar 

  18. Frank Jones B. Jr.: A fundamental solution for the heat equation which is supported in a strip. J. Math. Anal. Appl. 60(2), 314–324 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lang S.: Introduction to Diophantine Approximations. Addison-Wesley Publishing Co., Reading (1966)

    MATH  Google Scholar 

  20. Lebeau G.: Contrôle analytique. I. Estimations a priori. Duke Math. J. 68(1), 1–30 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lebeau G.: Contrôle de l’équation de Schrödinger . J. Math. Pures Appl. (9) 71(3), 267–291 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Lebeau G., Robbiano L.: Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20(1–2), 335–356 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions, J.-L.: Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, volume RMA 8. Masson, 1988

  24. Micu S., de Teresa L.: A spectral study of the boundary controllability of the linear 2-D wave equation in a rectangle. Asymptot. Anal. 66(3–4), 139–160 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Micu S., Zuazua E.: On the controllability of a fractional order parabolic equation. SIAM J. Control Optim. 44(6), 1950–1972 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Micu S., Zuazua E.: Regularity issues for the null-controllability of the linear 1-d heat equation. Syst. Control Lett. 60, 406–413 (2011). doi:10.1016/j.sysconle.2011.03.005

    Article  MATH  MathSciNet  Google Scholar 

  27. Miller L.: A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1465–1485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Miller L.: Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204(1), 202–226 (2004)

    MATH  Google Scholar 

  29. Miller L.: On the null-controllability of the heat equation in unbounded domains. Bull. Sci. Math. 129(2), 175–185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller L.: The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45(2), 762–772 (2006)

    Article  MathSciNet  Google Scholar 

  31. Miller L.: On exponential observability estimates for the heat semigroup with explicit rates. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. (9) 17(4), 351–366 (2006)

    Article  MATH  Google Scholar 

  32. Miller L.: On the controllability of anomalous diffusions generated by the fractional Laplacian. Math. Control Signals Syst. 18(3), 260–271 (2006)

    Article  MATH  Google Scholar 

  33. Munch A., Zuazua E.: Numerical approximation of null controls for the heat equation through transmutation. J. Inverse Probl. 26(8), 085018 (2010). doi:10.1088/0266-5611/26/8/085018

    Article  MathSciNet  ADS  Google Scholar 

  34. Phung, K.D.: Waves, damped wave and observation. In: Li, T.-T., Peng, Y.-J., Rao, B.-P. (Eds.) Some Problems on Nonlinear Hyperbolic Equations and Applications. Series in Contemporary Applied Mathematics CAM 15 (2010)

  35. Rauch J., Zhang X., Zhang X., Zhang X.: Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl. (9) 84(4), 407–470 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Robbiano L.: Fonction de coût et contrôle des solutions des équations hyperboliques. Asympt. Anal. 10(2), 95–115 (1995)

    MathSciNet  MATH  Google Scholar 

  37. Russell D.L.: A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52, 189–211 (1973)

    MATH  Google Scholar 

  38. Seidman T.I.: Time-invariance of the reachable set for linear control problems. J. Math. Anal. Appl. 72(1), 17–20 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tenenbaum G., Tucsnak M.: New blow-up rates for fast controls of Schrödinger and heat equations. J. Differ. Equ. 243(1), 70–100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Widder D.V.: The role of the Appell transformation in the theory of heat conduction. Trans. Am. Math. Soc. 109, 121–134 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zuazua E.: Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10(1), 109–129 (1993)

    MathSciNet  MATH  Google Scholar 

  42. Zuazua, E.: Some results and open problems on the controllability of linear and semilinear heat equations. In: Carleman Estimates and Applications to Uniqueness and Control Theory (Cortona, 1999). Progr. Nonlinear Differential Equations Appl.,Vol. 46, pp. 191–211. Birkhäuser Boston, Boston, 2001

  43. Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Dafermos, C.M., Elsevier Science Feireisl, E. (Eds.) Handbook of Differential Equations, Vol. 3, pp. 527–621 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Ervedoza.

Additional information

Communicated by C. Le Bris

This paper has mainly been developed while Sylvain Ervedoza was a visiting fellow at the Basque Center for Applied Mathematics (BCAM). He has been partially supported by the Agence Nationale de la Recherche (ANR, France), Project C-QUID number BLAN-3-139579 and Project CISIFSnumber NT09-437023. Enrique Zuazua was also partially supported by Grant MTM2008-03541 of the MICINN (Spain), project PI2010-04 of the Basque Government, the ERC Advanced Grant FP7-246775 NUMERIWAVES, and the ESF Research Networking Program OPTPDE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ervedoza, S., Zuazua, E. Sharp Observability Estimates for Heat Equations. Arch Rational Mech Anal 202, 975–1017 (2011). https://doi.org/10.1007/s00205-011-0445-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0445-8

Keywords

Navigation