Skip to main content
Log in

Optimal Gradient Estimates and Asymptotic Behaviour for the Vlasov–Poisson System with Small Initial Data

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The Vlasov–Poisson system describes interacting systems of collisionless particles. For solutions with small initial data in three dimensions it is known that the spatial density of particles decays as t −3 at late times. In this paper this statement is refined to show that each derivative of the density which is taken leads to an extra power of decay, so that in N dimensions for \({N \geqq 3}\) the derivative of the density of order k decays as t N-k. An asymptotic formula for the solution at late times is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréasson, H.: The Einstein-Vlasov system/kinetic theory. Liv. Rev. Relativ. 8, lrr-2005-2 (2005)

  2. Binney J., Tremaine S.: Galactic Dynamics. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  3. Bardos C., Degond P.: Global existence for the Vlasov–Poisson system in 3 space variables with small initial data. Ann. Inst. H. Poincaré (Anal. Non Linéaire) 2, 101–118 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Batt J., Kunze M., Rein G.: On the asymptotic behaviour of a one-dimensional monocharged plasma and a rescaling method. Adv. Differ. Equ. 3, 271–292 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Calogero S.: Global classical solutions to the 3D Vlasov-Nordström system. Commun. Math. Phys. 256, 343–353 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Christodoulou D., Klainerman S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  7. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  8. Glassey R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

    Book  MATH  Google Scholar 

  9. Glassey R.T., Strauss W.: Absence of shocks in an initially dilute collisionless plasma. Commun. Math. Phys. 113, 191–208 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Goldston R.J., Rutherford P.H.: Introduction to Plasma Physics. IOP Publishing, Bristol (1995)

    Book  Google Scholar 

  11. Horst E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. II. Special cases. Math. Meth. Appl. Sci. 4, 19–32 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horst E.: On the asymptotic growth of the solutions of the Vlasov–Poisson system. Math. Meth. Appl. Sci. 16, 75–86 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Illner R., Rein G.: Time decay of the solutions of the Vlasov–Poisson system in the plasma physical case. Math. Meth. Appl. Sci. 19, 1409–1413 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lemou M., Mehats F., Raphael P.: On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system. Arch. Rational Mech. Anal. 189, 425–468 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Lions P.-L., Perthame B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Lindblad H., Rodnianski I.: The global stability of the Minkowski space-time in harmonic gauge. Ann. Math. 171, 1401–1477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Perthame B.: Time decay, propagation of low moments and dispersive effects for kinetic equations. Commun. Partial Differ. Equ. 21, 659–686 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pfaffelmoser K.: Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rein G.: Generic global solutions of the Vlasov-Maxwell system of plasma physics. Commun. Math. Phys. 135, 41–78 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Rein G.: Nonlinear stability of homogeneous models in Newtonian cosmology. Arch. Rational Mech. Anal. 140, 335–351 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Rein G.: Growth estimates for the Vlasov-Poisson system in the plasma physics case. Math. Nachr. 191, 269–278 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rein G., Rendall A.D.: Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Commun. Math. Phys. 150, 561–583 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Rein G., Rendall A.D.: Global existence of classical solutions to the Vlasov-Poisson system in a three-dimensional cosmological setting. Arch. Rational Mech. Anal. 126, 183–201 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Rendall A.D.: The Einstein-Vlasov system. In: Chruściel, P.T., Friedrich, H. (eds) The Einstein Equations and the Large Scale Behavior of Gravitational Fields., Birkhäuser, Basel (2004)

    Google Scholar 

  25. Schaeffer J.: Global existence for the Poisson-Vlasov system with nearly symmetric data. J. Differ. Equ. 69, 111–148 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tchapnda S.B., Rendall A.D.: Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant. Class. Quantum Grav. 20, 3037–3049 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. L. Velázquez.

Additional information

Communicated by Y. Brenier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, H.J., Rendall, A.D. & Velázquez, J.J.L. Optimal Gradient Estimates and Asymptotic Behaviour for the Vlasov–Poisson System with Small Initial Data. Arch Rational Mech Anal 200, 313–360 (2011). https://doi.org/10.1007/s00205-011-0405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0405-3

Keywords

Navigation