Skip to main content
Log in

On the Linearized Vlasov–Poisson System on the Whole Space Around Stable Homogeneous Equilibria

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the linearized Vlasov–Poisson system around suitably stable homogeneous equilibria on \({\mathbb {R}}^d\times {\mathbb {R}}^d\) (for any \(d \ge 1\)) and establish dispersive \(L^\infty \) decay estimates in the physical space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bardos, C.: About a variant of the 1d Vlasov equation, dubbed Vlasov–Dirac–Benney equation. In: Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2012–2013, Sémin. Équ. Dériv. Partielles, pages Exp. No. XV, 21. École Polytech., Palaiseau (2014)

  2. Bardos, C., Degond, P.: Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 101–118 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping: paraproducts and Gevrey regularity. Ann. PDE 2(1), 4 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping in finite regularity for unconfined systems with screened interactions. Commun. Pure Appl. Math. 71(3), 537–576 (2018)

    Article  MathSciNet  Google Scholar 

  5. Brenier, Y.: A Vlasov–Poisson type formulation of the Euler equations for perfect incompressible fluids. In: Rapport de Recherche INRIA (1989)

  6. Brenier, Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math. 52(4), 411–452 (1999)

    Article  MathSciNet  Google Scholar 

  7. Castella, F., Perthame, B.: Estimations de Strichartz pour les équations de transport cinétiques. C. R. Acad. Sci. Paris Sér. I Math. 322(6), 535–540 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Dietert, H., Fernandez, B., Gérard-Varet, D.: Landau damping to partially locked states in the Kuramoto model. Commun. Pure Appl. Math. 71(5), 953–993 (2018)

    Article  MathSciNet  Google Scholar 

  9. Faou, E., Rousset, F.: Landau damping in Sobolev spaces for the Vlasov-HMF model. Arch. Ration. Mech. Anal. 219(2), 887–902 (2016)

    Article  MathSciNet  Google Scholar 

  10. Farah, L.G., Rousset, F., Tzvetkov, N.: Oscillatory integral estimates and global well-posedness for the 2D Boussinesq equation. Bull. Braz. Math. Soc. N.S. 43(4), 655–679 (2012)

    Article  MathSciNet  Google Scholar 

  11. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(4), 309–327 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  12. Glassey, R., Schaeffer, J.: Time decay for solutions to the linearized Vlasov equation. Transp. Theory Stat. Phys. 23(4), 411–453 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. Glassey, R., Schaeffer, J.: On time decay rates in Landau damping. Commun. Partial Differ. Equ. 20(3–4), 647–676 (1995)

    Article  MathSciNet  Google Scholar 

  14. Grenier, E., Nguyen, T.T., Rodnianski, I.: Landau damping for analytic and Gevrey data. Math. Res. Lett. arXiv:2004.05979 (2020) (to appear)

  15. Han-Kwan, D., Nguyen, T.T., Rousset, F.: Asymptotic stability of equilibria for screened Vlasov–Poisson systems via pointwise dispersive estimates. Ann. PDE 7(2), 18 (2021). arXiv:1906.05723

  16. Han-Kwan, D., Rousset, F.: Quasineutral limit for Vlasov–Poisson with Penrose stable data. Ann. Sci. Éc. Norm. Supér. 49(6), 1445–1495 (2016)

    Article  MathSciNet  Google Scholar 

  17. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, T.T.: Derivative estimates for screened Vlasov–Poisson system around Penrose-stable equilibria. Kinet. Relat. Models 13(6), 1193–1218 (2020). arXiv:2004.05546

Download references

Acknowledgements

DHK was partially supported by the grant ANR-19-CE40-0004. TN was supported in part by the NSF under grant DMS-1764119, an AMS Centennial fellowship, and a Simons fellowship. FR was partially supported by the ANR projects ANR-18-CE40-0027 and ANR-18-CE40-0020-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Rousset.

Additional information

Communicated by A. Ionescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Radial Decreasing Equilibria Satisfy the Stability Assumption (H2)

Appendix: Radial Decreasing Equilibria Satisfy the Stability Assumption (H2)

In this section we shall prove

Proposition 8.1

Let \(\mu \) satisfy (1.2) and (1.4). If \(\mu (v) = F\left( { |v|^2 \over 2} \right) \) with \(F'(s) <0\), \(\forall s \ge 0\), then (H2) is verified.

Proof

We study the function \( \tau \mapsto 1-m_{KE}(i \tau , \eta )\) for \(\eta \in {\mathbb {S}}^{d-1}.\) By using (4.9), we get that \(m_{KE}(i\tau , \eta ) \rightarrow 0\) when \(| \tau |\) tends to \(+\infty \), so that it suffices to study \( \tau \mapsto 1-m_{KE}(i \tau , \eta )\) for bounded \(\tau \). We have for \(\gamma >0\), \(|\eta |= 1\),

$$\begin{aligned} m_{KE}(z, \eta )= & {} - \int _{0}^{+ \infty } e^{-(\gamma + i \tau )s}\, i \eta \cdot \sum _{k,l} \eta _k \eta _l {\mathcal {F}}_v( v_k v_l \nabla _v \mu )(\eta s) \, d s, \\= & {} - i \int _{0}^{+ \infty } \int _{{\mathbb {R}}^d} e^{ -( \gamma + i \tau + i \eta \cdot v) t} (\eta \cdot v)^3 F'\left( {|v|^2 \over 2}\right) \, dv dt. \end{aligned}$$

We then write \(v= u \eta + w\) with \(w \in \eta ^{\perp }= H_{\eta }\) so that

$$\begin{aligned} m_{KE}(z, \eta )= - i \int _{0}^{+ \infty } \int _{{\mathbb {R}}} e^{ -( \gamma + i \tau + i u) t} u^3 \Phi '\left( { u^2 \over 2} \right) \, du dt \end{aligned}$$

where

$$\begin{aligned} \Phi (s)= \int _{H_{\eta }} F \left( s + {|w|^2 \over 2} \right) \, dw. \end{aligned}$$
(8.1)

This yields

$$\begin{aligned} m_{KE}(z, \eta ) = - \int _{{\mathbb {R}}} { \tau + u \over \gamma ^2 + (\tau + u)^2} u^3 \Phi '\left( { u^2 \over 2} \right) \, du - i \gamma \int _{{\mathbb {R}}} { u^3 \over \gamma ^2 + (\tau + u)^2} \Phi '\left( { u^2 \over 2} \right) \, du. \end{aligned}$$

Taking the limit \(\gamma \rightarrow 0\) (following e.g. [17, Proof of Prop. 2.1]), we get that

$$\begin{aligned} m_{KE}(i\tau , \eta ) = - \text{ p.v. } \int _{{\mathbb {R}}} {u^3\Phi '\left( { u^2 \over 2} \right) \over \tau + u} \, du - i\pi \tau ^3 \Phi '\left( { \tau ^2 \over 2} \right) . \end{aligned}$$

We then observe that for bounded \(\tau \) the imaginary part vanishes only for \(\tau =0\) and in this case the real part is equal to

$$\begin{aligned} - \int _{{\mathbb {R}}} u^2 \Phi ' \left( {u^2 \over 2}\right) \, du= \int _{{\mathbb {R}}} \int _{{\mathbb {R}}^{d-1}} F\left( {u^2 + |w|^2 \over 2}\right) \, dw du= \int _{{\mathbb {R}}^d} \mu dv= 1. \end{aligned}$$

Therefore \(1 - m_{KE}(i\tau , \eta )\) vanishes only for \(\tau = 0\).

Let us now compute \(\partial _{z}m_{KE}(0, \eta )\) and \(\partial _{z}^2 m_{KE}(0, \eta )\). Following the same lines, we first get that

$$\begin{aligned} \partial _{z}m_{KE}(z, \eta )= & {} i \int _{0}^{+ \infty } \int _{{\mathbb {R}}} t e^{ -( \gamma + i \tau + i u) t} u^3 \Phi '\left( { u^2 \over 2} \right) \, du dt \\= & {} \int _{0}^{ + \infty } \int _{{\mathbb {R}}}e^{ -( \gamma + i \tau + i u) t} \partial _{u}\left( u^3 \Phi '\left( { u^2 \over 2} \right) \right) \, du dt \end{aligned}$$

and therefore

$$\begin{aligned} \partial _{z}m_{KE}(z, \eta )= & {} - i \int _{{\mathbb {R}}} { \tau + u \over \gamma ^2 + (\tau + u)^2} \partial _{u}\left( u^3 \Phi '\left( { u^2 \over 2} \right) \right) du \\&+ \gamma \int _{{\mathbb {R}}} { 1 \over \gamma ^2 + (\tau + u)^2} \partial _{u}\left( u^3 \Phi '\left( { u^2 \over 2} \right) \right) \, du. \end{aligned}$$

Taking the limit \(\gamma \rightarrow 0\) as before, we get

$$\begin{aligned} \partial _{z}m_{KE}(0, \eta ) = - i \int _{{\mathbb {R}}} { 1 \over u } \partial _{u}\left( u^3 \Phi '\left( { u^2 \over 2} \right) \right) \, du. \end{aligned}$$

By integrating by parts as before, this yields

$$\begin{aligned} \partial _{z}m_{KE}(0, \eta ) = i \int _{{\mathbb {R}}} u \Phi '\left( { u^2 \over 2} \right) \, du = 0 . \end{aligned}$$

Finally, for \(\partial _{z}^2m_{KE}(0, \eta )\), we have

$$\begin{aligned} \partial _{z}^2m_{KE}(z, \eta )= & {} - \int _{0}^{ + \infty } \int _{{\mathbb {R}}}e^{ -( \gamma + i \tau + i u) t} t \partial _{u}\left( u^3 \Phi ' \left( { u^2 \over 2} \right) \right) \, du dt \\= & {} i \int _{0}^{ + \infty } \int _{{\mathbb {R}}}e^{ -( \gamma + i \tau + i u) t} t \partial _{u}^2\left( u^3 \Phi '\left( { u^2 \over 2} \right) \right) \, du dt. \end{aligned}$$

This yields as before

$$\begin{aligned} \partial _{z}^2m_{KE}(0, \eta )= & {} - \int _{{\mathbb {R}}} { 1 \over u} \partial _{u}^2\left( u^3 \Phi ' \left( { u^2 \over 2} \right) \right) \, du= \int _{{\mathbb {R}}} { 1 \over u^2} \partial _{u}\left( u^3 \Phi ' \left( { u^2 \over 2} \right) \right) du\\= & {} 2 \int _{{\mathbb {R}}} \Phi ' \left( { u^2 \over 2} \right) du. \end{aligned}$$

By using the definition (8.1), we thus get that

$$\begin{aligned} \partial _{z}^2m_{KE}(0, \eta ) = 2 \int _{{\mathbb {R}}^d} F'\left( { |v|^2 \over 2} \right) dv \ne 0 \end{aligned}$$

and the proof of the proposition is complete. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han-Kwan, D., Nguyen, T.T. & Rousset, F. On the Linearized Vlasov–Poisson System on the Whole Space Around Stable Homogeneous Equilibria. Commun. Math. Phys. 387, 1405–1440 (2021). https://doi.org/10.1007/s00220-021-04228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04228-2

Navigation