Skip to main content
Log in

Global Behavior of Spherically Symmetric Navier–Stokes–Poisson System with Degenerate Viscosity Coefficients

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study a free boundary problem for compressible spherically symmetric Navier–Stokes–Poisson equations with degenerate viscosity coefficients and without a solid core. Under certain assumptions that are imposed on the initial data, we obtain the global existence and uniqueness of the weak solution and give some uniform bounds (with respect to time) of the solution. Moreover, we obtain some stabilization rate estimates of the solution. The results show that such a system is stable under small perturbations, and could be applied to the astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bresch D., Desjardins B.: On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier–Stokes models. J. Math. Pure Appl. 86, 362–368 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen G.Q., Kratka M.: Global solutions to the Navier–Stokes equations for compressible heat-conducting flow with symmetry and free boundary. Comm. Partial Differ. Equ. 27, 907–943 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen P., Zhang T.: A vacuum problem for multidimensional compressible Navier–Stokes equations with degenerate viscosity coefficients. Commun. Pure Appl. Anal. 7, 987–1016 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiu H.Y.: Stellar Physics, vol. I. Blaisdell, Waltham (1968)

    Google Scholar 

  5. Ducomet B., Zlotnik A.A.: Viscous compressible barotropic symmetric flows with free boundary under general mass force. I. uniform-in-time bounds and stabilization. Math. Methods Appl. Sci. 28, 827–863 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ducomet B., Zlotnik A.A.: Lyapunov functional method for 1D radiative and reactive viscous gas dynamics. Arch. Ration. Mech. Anal. 177, 185–229 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grad, H.: Asymptotic theory of the Boltzmann equation II. Rarefied Gas Dynamics 1. (Ed. Laurmann, J.). Academic Press, New York, pp. 26–59, 1963

  8. Hartman P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  9. Hoff D., Serre D.: The failure of continuous dependence on initial data for the Navier– Stokes equations of compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kobayashi T., Shibata Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in R 3. Comm. Math. Phys. 200, 621–659 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Lin S.S.: Stability of gaseous stars in spherically symmetric motions. SIAM J. Math. Anal. 28, 539–569 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lions, P.L.: Mathematical topics in fluid mechanics, vol. 1–2. Oxford University Press, New York, 1996, 1998

  13. Liu T.P., Xin Z.P., Yang T.: Vacuum states of compressible flow. Discrete Contin. Dynam. Syst. 4, 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Matsumura A., Yanagi S.: Uniform boundedness of the solutions for a one-dimensional isentropic model system of a compressible viscous gas. Comm. Math. Phys. 175, 259–274 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Matus̆u-Necasová S̆., Okada M., Makoni T.(1997). Free boundary problem for the equation of spherically symmetric motion of viscous gas (II)–(III). Jpn. J. Ind. Appl. Math. 12: 195–203 (1995); 14, 199–213 (1997)

  16. Okada M., Makino T.: Free boundary value problems for the equation of spherically symmetrical motion of viscous gas. Jpn. J. Appl. Math. 10, 219–235 (1993)

    Article  MATH  Google Scholar 

  17. Okada, M.: S̆. Matus̆u̇-Nec̆asová and T. Makino, Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann. Univ. Ferrara Sez. VII (N.S.) 48, 1–20 (2002)

  18. Stras̆kraba I., Zlotnik A.A.: Global behavior of 1d-viscous compressible barotropic fluid with a free boundary and large data. J. Math. Fluid Mech. 5, 119–143 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vaigant V.A., Kazhikhov A.V.: On existence of global solutions to the two-dimensional Navier–Stokes equations for a compressible viscosity fluid. Siberian Math. J. 36, 1108–1141 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ukai S., Yang T., Zhao H.J.: Convergence rate for the compressible Navier–Stokes equations with external force. J. Hyperbolic Differ. Equ. 3, 561–574 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vong S.W., Yang T., Zhu C.J.: Compressible Navier–Stokes equations with degenerate viscosity coefficient and vacuum (II). J. Differ. Equ. 192, 475–501 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wei M.J., Zhang T., Fang D.Y.: Global behavior of spherically symmetric Navier–Stokes equations with degenerate viscosity coefficients. SIAM J. Math. Anal. 40, 869–904 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xin Z.P.: Blow-up of smooth solution to the compressible Navier–Stokes equations with compact density. Comm. Pure Appl. Math. 51, 229–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang T., Zhu C.J.: Compressible Navier–Stokes equations with degenerate viscosity coefficient and vacuum. Comm. Math. Phys. 230, 329–363 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhang T., Fang D.Y.: Global behavior of compressible Navier–Stokes equations with a degenerate viscosity coefficient. Arch. Ration. Mech. Anal. 182, 223–253 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang T., Fang D.Y.: Global behavior of spherically symmetric Navier–Stokes equations with density-dependent viscosity. J. Differ. Equ. 236, 293–341 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Zlotnik A.A., Ducomet B.: The stabilization rate and stability of viscous compressible barotropic symmetric flows with a free boundary for a general mass force. Sb. Math. 196, 1745–1799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhang.

Additional information

This work is supported by NSFC 10571158, Zhejiang Provincial NSF of China (Y605076) and China Postdoctoral Science Foundation 20060400335.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Fang, D. Global Behavior of Spherically Symmetric Navier–Stokes–Poisson System with Degenerate Viscosity Coefficients. Arch Rational Mech Anal 191, 195–243 (2009). https://doi.org/10.1007/s00205-008-0183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0183-8

Keywords

Navigation