Skip to main content
Log in

Overall Properties of a Discrete Membrane with Randomly Distributed Defects

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A prototype for variational percolation problems with surface energies is considered: the description of the macroscopic properties of a (two-dimensional) discrete membrane with randomly distributed defects in the spirit of the weak membrane model of Blake and Zisserman (quadratic springs that may break at a critical length of the elongation). After introducing energies depending on suitable independent identically distributed random variables, this is done by exhibiting an equivalent continuum energy computed using Γ-convergence, geometric measure theory, and percolation arguments. We show that below a percolation threshold the effect of the defects is negligible and the continuum description is given by the Dirichlet integral, while above that threshold an additional (Griffith) fracture term appears in the energy, which depends only on the defect probability through the chemical distance on the “weak cluster of defects”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicandro, R., Braides, A., Cicalese, M.: Continuum limits of discrete thin films with superlinear growth densities. Calc. Var. Partial Diff. Eq. (to appear)

  2. Alicandro R., Cicalese M. (2004) A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36, 1–37

    Article  MATH  MathSciNet  Google Scholar 

  3. Alicandro R., Focardi M., Gelli M.S. (2000) Finite-difference approximation of energies in fracture mechanics. Ann. Scuola Norm. Pisa (IV) 29, 671–709

    MATH  MathSciNet  Google Scholar 

  4. Ambrosio L., Fusco N., Pallara D. (2000) Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford

    MATH  Google Scholar 

  5. Blake A., Zisserman A. (1987) Visual Reconstruction. MIT Press, Cambridge

    Google Scholar 

  6. Braides, A.: Approximation of Free-Discontinuity Problems. Lecture Notes in Math., vol. 1694. Springer, Berlin, 1998

  7. Braides A. (2002) Γ-convergence for Beginners. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Braides A., Chiadò Piat V. (1996) Integral representation results for functionals defined in SBV(Ω;I R m). J. Math. Pures Appl. 75, 595–626

    MATH  MathSciNet  Google Scholar 

  9. Braides A., Dal Maso G., Garroni A. (1999) Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146, 23–58

    Article  MATH  MathSciNet  Google Scholar 

  10. Braides A., Francfort G. (2004) Bounds on the effective behavior of a square conducting lattice. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 460, 1755–1769

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Braides A., Gelli M.S.: The passage from discrete to continuous variational problems: a nonlinear homogenization process. Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials (Eds. Ponte Castaneda P., Telega J.J. and Gambin B.) Kluwer, Dordrecht, pp. 45–63, 2004

  12. Braides A., Solci M., Vitali E. (2007) A derivation of linear elastic energies from pair-interaction atomistic systems. Netw. Heterog. Media 2, 551–567

    MATH  MathSciNet  Google Scholar 

  13. Chambolle A. (1992) Un théorème de Γ-convergence pour la segmentation des signaux. C. R. Acad. Sci., Paris, Ser. I 314, 191–196

    MATH  MathSciNet  Google Scholar 

  14. Chambolle A. (1995) Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55, 827–863

    MATH  MathSciNet  Google Scholar 

  15. Cortesani G., Toader R. (1999) A density result in SBV with respect to non-isotropic energies. Nonlin. Anal. 38, 585–604

    Article  MathSciNet  Google Scholar 

  16. Dal Maso G. (1993) An Introduction to Γ-convergence. Birkhäuser, Boston

    Google Scholar 

  17. De Giorgi E., Ambrosio L. (1988) Un nuovo funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 82, 199–210

    MATH  Google Scholar 

  18. Friesecke G., Theil F. (2002) Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlin. Sci. 12, 445–478

    Article  MATH  MathSciNet  Google Scholar 

  19. Garet O., Marchand R. (2004) Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster. ESAIM Probab. Stat. 8, 169–199

    Article  MATH  MathSciNet  Google Scholar 

  20. Garet O., Marchand R. (2007) Large deviations for the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 35, 833–866

    Article  MATH  MathSciNet  Google Scholar 

  21. Griffith A.A. (1920) The phenomenon of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198

    Article  ADS  Google Scholar 

  22. Grimmett G.: Percolation, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 321. Springer, Berlin, 1999

  23. Grimmett G., Kesten H. (1984) First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Geb. 66, 335–366

    Article  MATH  MathSciNet  Google Scholar 

  24. Kesten H. (1982) Percolation theory for mathematicians. Progress in Probability and Statistics, vol. 2. Birkhäuser, Boston

    Google Scholar 

  25. Kesten H.: Aspects of first-passage percolation. Ècole d’été de probabilités de Saint-Fleur, XIV-1984. Lecture Notes in Math., vol. 180 (Ed. Hennequin P.L.) Springer, Heidelberg, pp. 125–262, 1986

  26. Mumford D., Shah J. (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 17, 577–685

    Article  MathSciNet  Google Scholar 

  27. Zhang Y., Zhang Y.C. (1984) A limit theorem for N 0n /n in first passage percolation. Ann. Probab. 12, 1068–1076

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Braides.

Additional information

Communicated by G. Friesecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braides, A., Piatnitski, A. Overall Properties of a Discrete Membrane with Randomly Distributed Defects. Arch Rational Mech Anal 189, 301–323 (2008). https://doi.org/10.1007/s00205-008-0114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0114-8

Keywords

Navigation