Skip to main content
Log in

The Modeling of Deformable Bodies with Frictionless (Self-)Contacts

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We propose a mathematical model for m-dimensional deformable bodies moving in \(\mathbb {R}^n\) , that allows for frictionless contacts or self-contacts while forbidding transversal (self-)intersection. To this end, a topological constraint is imposed to the set of admissible deformations. We restrict our analysis to the static case (although the dynamic case is briefly addressed at the end of the article). In this case, no transversal self-intersection can occur as long as 2m < n, so our modeling is mainly designed to handle the case \(2m \geqq n\) . For nonlinear hyperelastic bodies, we prove the existence of at least one minimizer of the energy on the set of admissible deformations, under suitable assumptions on the stored energy function. Moreover, for certain choices of m and n, under regularity assumptions on the minimizers, the solutions of the minimization problem satisfy Euler–Lagrange equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical methods of classical mechanics. Graduate Texts in Mathematics, Vol. 60. Springer, New York, 1997. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. Corrected reprint of the 2nd edn, 1989

  2. Ball, J.: Topological methods in the nonlinear analysis of beams. Ph.D. thesis, University of Sussex, 1972

  3. Ball J.M. (1976/1977) Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4): 337–403

    Google Scholar 

  4. Ball J.M. (1981) Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. Sect. A 88(3–4): 315–328

    MATH  Google Scholar 

  5. Bott R., Tu L.W. (1982) Differential forms in algebraic topology. Graduate Texts in Mathematics, Vol. 82. Springer, New York

    Google Scholar 

  6. Ciarlet P.G., Nečas J. (1985) Unilateral problems in nonlinear, three-dimensional elasticity. Arch. Ration. Mech. Anal. 87(4): 319–338

    Article  MATH  Google Scholar 

  7. Ciarlet P.G., Nečas J. (1987) Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97(3): 171–188

    Article  Google Scholar 

  8. Giaquinta M., Modica G., Souček J. (1989) Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 106(2): 97–159

    Article  MATH  Google Scholar 

  9. Giaquinta, M., Modica, G., Souček, J.: Erratum and addendum to: “Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity” [Arch. Ration. Mech. Anal. 106 (1989), no. 2, 97–159; MR 90c:58044]. Arch. Ration. Mech. Anal. 109(4), 385–392 (1990)

  10. Godbillon C. (1969) Géométrie différentielle et mécanique analytique. Hermann, Paris

    Google Scholar 

  11. Gonzalez O., Maddocks J.H., Schuricht F., von der Mosel H. (2002) Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. Partial Differ. Equ. 14(1): 29–68

    Article  MATH  Google Scholar 

  12. Le Dret H., Raoult A. (1995) The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pure Appl. (9) 74(6): 549–578

    MATH  MathSciNet  Google Scholar 

  13. Le Dret H., Raoult A. (1996) The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlin. Sci. 6(1): 59–84

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Marcus M., Mizel V.J. (1973) Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems. Bull. Am. Math. Soc. 79: 790–795

    Article  MATH  MathSciNet  Google Scholar 

  15. Morrey C.B., Jr. (1952) Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2: 25–53

    MATH  MathSciNet  Google Scholar 

  16. Morrey, C.B., Jr.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer, New York, 1966

  17. Pantz, C.B.: The modeling of deformable bodies with frictionless (self-)contacts. Rapport Interne 585, CMAP, École Polytechnique, Palaiseau France, 2005

  18. Pantz, C.B.: Contacts en dimension 2: Une mthode de pnalisation. Rapport Interne 597, CMAP, École Polytechnique, Palaiseau France, 2006

  19. Pipkin A.C. (1986) The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. 36(1): 85–99

    Article  MATH  MathSciNet  Google Scholar 

  20. Schuricht F. (1997) A variational approach to obstacle problems for shearable nonlinearly elastic rods. Arch. Ration. Mech. Anal. 140(2): 103–159

    Article  MATH  MathSciNet  Google Scholar 

  21. Schuricht F. (2002) Global injectivity and topological constraints for spatial nonlinearly elastic rods. J. Nonlin. Sci. 12(5): 423–444

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Schuricht F. (2002) Variational approach to contact problems in nonlinear elasticity. Calc. Var. Partial Differ. Equ. 15(4): 433–449

    Article  MATH  MathSciNet  Google Scholar 

  23. Schuricht F., von der Mosel H. (2003) Euler–Lagrange equations for nonlinearly elastic rods with self-contact. Arch. Ration. Mech. Anal. 168(1): 35–82

    Article  MATH  MathSciNet  Google Scholar 

  24. Šverák V. (1988) Regularity properties of deformations with finite energy. Arch. Ration. Mech. Anal. 100(2): 105–127

    Article  MATH  Google Scholar 

  25. Tang Q. (1988) Almost-everywhere injectivity in nonlinear elasticity. Proc. R. Soc. Edinb. Sect. A 109(1–2): 79–95

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pantz.

Additional information

Communicated by S. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantz, O. The Modeling of Deformable Bodies with Frictionless (Self-)Contacts. Arch Rational Mech Anal 188, 183–212 (2008). https://doi.org/10.1007/s00205-007-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0091-3

Keywords

Navigation