Skip to main content
Log in

Urinary mercapturic acid diastereoisomers in rats subchronically exposed to styrene and ethanol

  • ORIGINAL INVESTIGATION
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

 Styrene is stereoselectively oxidized by cytochrome P450 to its reactive metabolite, styrene oxide. The (R)- and (S)-enantiomers of styrene oxide can be conjugated with glutathione (GSH) to both (R)- and (S)-diastereoisomers of the specific mercapturic acids, N-acetyl-S-(1-phenyl-2-hydroxyethyl)-L-cysteine (M1) and N-acetyl-S-(2-phenyl-2-hydroxyethyl)-L-cysteine (M2). Several investigations have indicated different toxic potential of the (R)- and (S)-configurations of styrene oxide and its GSH- and N-acetyl-conjugates. In this study the mercapturic acid diastereoisomers were measured in the urine of rats exposed to styrene in combination with ethanol, a good inducer of styrene metabolism. Male Sprague-Dawley rats were given an isocaloric liquid diet containing ethanol (5% w/v) for 3 weeks. Starting from the 2nd week, the animals were also exposed to styrene vapours (300 ppm, 6 h/day, 5 days/week) in a dynamic exposure chamber. Both the (R)- and (S)-diastereoisomers of the M1 and M2 as well as the conventional biomarkers, mandelic acid (MA) and phenylglyoxylic acid (PGA) were measured in urinary samples. Approximately 30 and 25% reduction of the levels of brain non-protein sulfhydryls (NPS) was observed in the animals given styrene and ethanol, respectively, while the combined ethanol and styrene treatment resulted in a 60% decrease. Ethanol consumption also resulted in higher urinary levels of the M1-R, M1-S and M2 metabolites associated with increased M1-R/S ratio and higher urinary MA excretion compared to animals treated with styrene. These results suggest that the urinary mercapturic acid diastereoisomers may be used as a noninvasive tool to examine stereoselective patterns of styrene metabolism in vivo, as well as their alterations caused by ethanol. These compound-specific mercapturic acids may also be valuable indicators of styrene-induced disorders of GSH homeostasis in nonaccessible organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 19 December 1995/Accepted: 10 May 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coccini, T., Maestri, L., della Cuna, F. et al. Urinary mercapturic acid diastereoisomers in rats subchronically exposed to styrene and ethanol. Arch Toxicol 70, 736–741 (1996). https://doi.org/10.1007/s002040050334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050334

Navigation