Skip to main content
Log in

Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts

  • Original Investigation
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Many studies have shown that oxygen radicals can be produced during arsenic metabolism. We report here that in human fibroblasts (HFW cells) sodium arsenite exposure caused increased formation of fluorescent dichlorofluorescein (DCF) by oxidation of the nonfluorescent form. The enhanced DCF fluorescence was inhibited by a radical scavenger, butylated hydroxytoluene. The effects of sodium arsenite treatment on cellular antioxidant activities were then examined. Treatment of HFW cells with sodium arsenite resulted in a significant increase in heme oxygenase activity and ferritin level. Sodium arsenite-enhanced heme oxygenase synthesis was inhibited by co-treatment of cells with the antioxidants sodium azide and dimethyl sulfoxide. Furthermore, sodium arsenite treatment did not apparently affect glucose-6-phosphate dehydrogenase activity, but resulted in significantly increased glutathione levels and superoxide dismutase activity, slightly decreased glutathione peroxidase activity, and significantly decreased catalase activity. Sodium arsenite toxicity was partly reduced by addition of catalase to the culture medium. These results imply that arsenite can enhance oxidative stress in HFW cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105: 121–126

    Article  PubMed  CAS  Google Scholar 

  • Albores A, Cebrian ME, Bach PH, Connelly JC, Hinton RH, Bridges JW (1989) Sodium arsenite induced alterations in bilirubin excretion and heme metabolism. J Biochem Toxicol 4: 1–6

    Article  Google Scholar 

  • Ames BN, Gold LS (1991) Endogenous mutagens and the causes of aging and cancer. Mutat Res 250: 3–16

    PubMed  CAS  Google Scholar 

  • Aposhian HV (1989) Biochemical toxicology of arsenic. In: Hodgson E, Bend JR, Philpot RM (eds) Reviews in biochemical toxicology. Elsevier, New York, pp 265–299

    Google Scholar 

  • Applegate LA, Luscher P, Tyrrell RM (1991) Induction of heme oxygenase: a general response to oxidative stress in cultured mammalian cells. Cancer Res 51: 974–978

    PubMed  CAS  Google Scholar 

  • Athar M, Hasan SK, Srivastava RC (1983) Evidence for the involvement of hydroxyl radicals in nickel mediated enhancement of lipid peroxidation: implication for nickel carcinogenesis. Biochem Biophys Res Commun 147: 1276–1281

    Article  Google Scholar 

  • Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW Vercellotti GM (1992) Ferritin: a cytoprotective antioxidant stratagem of endothelium. J Biol Chem 267: 18148–18153

    PubMed  CAS  Google Scholar 

  • Bannai S, Sato H, Ishii T, Taketani S (1991) Enhancement of glutathione levels in mouse peritoneal macrophages by sodium arsenite, cadmium chloride and glucose/glucose oxidase. Biochim Biophys Acta 1092: 175–179

    Article  PubMed  CAS  Google Scholar 

  • Basu-Modak S, Tyrrell RM (1993) Singlet oxygen: a primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene. Cancer Res 53: 4505–4510

    PubMed  CAS  Google Scholar 

  • Bates MN, Smith AH, Claudia HR (1992) Arsenic ingestion and internal cancers: a review. Am J Epidemiol 135: 462–476

    PubMed  CAS  Google Scholar 

  • Blair PC, Thompson MB, Bechtold B, Wilson RE, Moorman MP, Fowler BA (1990) Evidence for oxidative damage to red blood cells in mice induced by arsine gas. Toxicology 63: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Cermak J, Balla J, Jacob HS, Balla G, Enright H, Nath K, Vercellotti GM (1993) Tumor cell heme uptake induces ferritin synthesis resulting in altered oxidant sensitivity: possible role in chemotherapy efficacy. Cancer Res 53: 5308–5313

    PubMed  CAS  Google Scholar 

  • Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227: 375–381

    Article  PubMed  CAS  Google Scholar 

  • Chang WC, Chen SH, Wu HL, Shi GY, Murota S, Morita I (1991) Cytoprotective effect of reduced glutathione in arsenical-induced endothelial cell injury. Toxicology 69: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Chuang YC, Lin TM, Wu HY (1985) Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancer. Cancer Res 45: 5895–5899

    PubMed  CAS  Google Scholar 

  • Cohn VH, Lyle J (1966) A fluorometric assay for glutathione. Anal Biochem 14: 434–440

    Article  PubMed  CAS  Google Scholar 

  • Dean RT (1987) A mechanism for accelerated degradation of intracellular proteins after limited damage by free radicals. FEBS Lett 220: 278–282

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein RS, Garcia-Mayol D, Pettingell W, Munro HN (1991) Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc Natl Acad Sci USA 88: 688–692

    Article  PubMed  CAS  Google Scholar 

  • Hassan HM, Fridovich I (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196: 385–395

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Huang CF, Wu DR, Jinn CM, Jan KY (1993a) Glutathione as a cellular defence against arsenite toxicity in cultured Chinese hamster ovary cells. Toxicology 79: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Frenkel K, Klein CB, Costa M (1993b) Nickel induces increased oxidants in intact cultured mammalian cells as detected by dichlorofluorescein fluorescence. Toxicol Appl Pharmacol 120: 29–36

    Article  PubMed  CAS  Google Scholar 

  • IARC (International Agents for Research on Cancer) (1980) Carcinogenesis of arsenic and arsenic compounds. IARC Monogr 23: 37–141

    Google Scholar 

  • Ishinishi N, Tsuchiya K, Vahter M, Fowler BA (1986) Arsenic. In: Friberg L, Nordberg GF, Vouk V (eds) Handbook on the toxicology of metals. Elsevier Science Publishers, Amsterdam, pp 43–83

    Google Scholar 

  • Jensen JC, Pogrebniak HW, Pass HI, Buresch C, Merino MJ, Kauffman D, Venzon D, Langstein HN, Norton JA (1992) Role of tumor necrosis factor in oxygen toxicity. J Appl Physiol 72: 1902–1907

    PubMed  CAS  Google Scholar 

  • Johnston D, Oppermann H, Jackson J, Levinson W (1980) Induction of four proteins in chick embryo cells by sodium arsenite. J Biol Chem 255: 6975–6980

    PubMed  CAS  Google Scholar 

  • Jornot L, Junod AF (1992) Response of human endothelia cell antioxidant enzymes to hyperoxia. Am J Respir Cell Mol Biol 6: 107–115

    PubMed  CAS  Google Scholar 

  • Kasprzak KS (1991) The role of oxidative damage in metal carcinogenicity. Chem Res Toxicol 4: 604–615

    Article  PubMed  CAS  Google Scholar 

  • Keyse SM, Tyrrell RM (1989) Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci USA 86: 99–103

    Article  PubMed  CAS  Google Scholar 

  • Klein CB, Frenkel K, Costa M (1991) The role of oxidative processes in metal carcinogenesis. Chem Res Toxicol 4: 592–604

    Article  PubMed  CAS  Google Scholar 

  • Kong XJ, Fanburg BL (1992) Regulation of Cu,Zn-superoxide dismutase in bovine pulmonary artery endothelial cells. J Cell Physiol 153: 491–497

    Article  PubMed  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium deficient rat liver. Biochem Biophys Res Commun 71: 952–958

    Article  PubMed  CAS  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5: 227–231

    Article  PubMed  CAS  Google Scholar 

  • Lee TC, Ho IC (1994a) Differential cytotoxic effects of arsenic on human and animal cells. Environ Health Perspect 102 [Suppl 3]: 101–105

    Article  PubMed  CAS  Google Scholar 

  • Lee TC, Ho IC (1994b) Expression of heme oxygenase in arsenite-resistant human lung adenocarcinoma cells. Cancer Res 54: 1660–1664

    PubMed  CAS  Google Scholar 

  • Lee TC, Ko JL, Jan KY (1989a) Differential cytotoxicity of sodium arsenite in human fibroblasts and Chinese hamster ovary cells. Toxicology 56: 289–299

    Article  PubMed  CAS  Google Scholar 

  • Lee TC, Wei ML, Chang WJ, Ho IC, Lo JF, Jan KY, Huang H (1989b) Elevation of glutathione levels and glutathione S-transferase activity in arsenic-resistant Chinese hamster ovary cells. In Vitro Cell Dev Biol 25: 442–448

    Article  PubMed  CAS  Google Scholar 

  • Lenartowicz E (1990) A complex effect of arsenite on the formation of α-ketoglutarate in rat liver mitochondria. Arch Biochem Biophys 283: 388–396

    Article  PubMed  CAS  Google Scholar 

  • Leonard A, Lauwerys RR (1980) Carcinogenicity, teratogenicity and mutagenicity of arsenic. Mutat Res 75: 49–62

    PubMed  CAS  Google Scholar 

  • Li W, Chou IH (1992) Effects of sodium arsenite on the cytoskeleton and cellular glutathione levels in cultured cells. Toxicol Appl Pharmacol 114: 132–139

    Article  PubMed  CAS  Google Scholar 

  • Maines MD (1988) Heme oxygenase; function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2: 2557–2568

    PubMed  CAS  Google Scholar 

  • Monte DD, Ross D, Bellomo G, Eklow L, Orrenius L (1984) Alterations in intracellular thiols homeostasis during the metabolism of menadione by isolated rat hepatocytes. Arch Biochem Biophys 235: 334–342

    Article  PubMed  Google Scholar 

  • Munro H (1993) The ferritin genes: their response to iron status. Nutr Rev 51: 65–73

    Article  PubMed  CAS  Google Scholar 

  • Nicotera TM, Block AW, Gibas Z, Sanberg AA (1985) Induction of superoxide dismutase, chromosomal aberrations, and sister chromatid exchanges by paraquat in Chinese hamster fibroblasts. Mutat Res 151: 263–268

    PubMed  CAS  Google Scholar 

  • Nordenson I, Beckman L (1991) Is the genotoxic effect of arsenic mediated by oxygen free radical? Hum Hered 41: 71–73

    Article  PubMed  CAS  Google Scholar 

  • Pisciotto P, Graziano JH (1980) Induction of mucosal glutathione synthesis by arsenic. Biochim Biophys Acta 628: 241–243

    PubMed  CAS  Google Scholar 

  • Reed DJ (1990) Glutathione: toxicological implications. Annu Rev Pharmacol Toxicol 30: 603–631

    Article  PubMed  CAS  Google Scholar 

  • Richter C, Frei B (1988) Ca2+ release from mitochondria induced by prooxidants. Free Radical Biol Med 4: 365–375

    Article  CAS  Google Scholar 

  • Spitz D, Oberley LW (1989) An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179: 8–18

    Article  PubMed  CAS  Google Scholar 

  • Squibb KS, Fowler BA (1983) The toxicity of arsenic and its compounds. In: Fowler BA (ed) Biological and environmental effects of arsenic. Elsevier Science Publishers BV, Amsterdam, pp 233–269

    Google Scholar 

  • Stevens JB, Autor AP (1977) Induction of superoxide dismutase by oxygen in neonatal rat lung. J Biol Chem 252: 3509–3514

    PubMed  CAS  Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M (1994) Role of cellular antioxidants in metal-induced damage. Cell Biol Toxicol 10: 1–22

    Article  PubMed  CAS  Google Scholar 

  • Sunderman FW (1979) Mechanism of metal carcinogenesis. Biol Trace Element Res 1: 63–86

    Article  CAS  Google Scholar 

  • Tam GKH, Charbonnean SM, Bryce F, Pomroy C, Sandi E (1979) Metabolism of inorganic arsenic (74As) in humans following oral ingestion. Toxicol Appl Pharmacol 50: 319–322

    Article  PubMed  CAS  Google Scholar 

  • Trush M, Kensler TW (1991) An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radical Biol Med 10: 201–209

    Article  CAS  Google Scholar 

  • Vahter M (1981) Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environ Res 25: 286–293

    Article  PubMed  CAS  Google Scholar 

  • Vile GF, Tyrrell RM (1993) Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem 268: 14678–14681

    PubMed  CAS  Google Scholar 

  • Wang TS, Huang H (1994) Active oxygen species are involved in the induction of micronuclei by arsenite in XRS-5 cells. Mutagenesis 9: 253–257

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Hoshino M, Okamoto M, Sawamura R, Hasegawa A, Okada S (1990) Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun 168: 58–64

    Article  PubMed  CAS  Google Scholar 

  • Yeh GC, Occhipinti SJ, Cowan KH, Chabner BA, Myers CE (1987) Adriamycin resistance in human tumor cells associated with marked alterations in the regulation of the hexose monophosphate shunt and its response to oxidant stress. Cancer Res 47: 5994–5999

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.C., Ho, I.C. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol 69, 498–504 (1995). https://doi.org/10.1007/s002040050204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050204

Key words

Navigation