Skip to main content
Log in

Dopaminergic system activity and cellular defense mechanisms in the striatum and striatal synaptosomes of the rat subchronically exposed to manganese

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In 6-month-old male Wistar rats, levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA), dehydroascorbic acid (DHAA), uric acid and glutathione (GSH) were determined by HPLC in the striatum and striatal synaptosomes after subchronic oral exposure to MnCl2 50–100–150 mg/kg. Mn significantly decreased levels of DA and GSH and increased levels of DHAA and uric acid both in the striatum and synaptosomes. In synaptosomes, individual total Mn doses/rat were directly correlated with individual DOPAC/DA ratio values (r=+0.647), uric acid (r=+0.532) and DHAA levels (r=+0.889) and inversely correlated with DA (r=−0.757) and GSH levels (r=−0.608). In turn, GSH levels were inversely correlated with uric acid (r=−0.451) and DHAA levels (r=−0.460). In conclusion, the response of striatal cellular defense mechanisms (increase in AA oxidation, decrease in GSH levels) correlated well with changes in markers of dopaminergic system activity and increase in uric acid levels. The latter provides evidence of an Mn-induced oxidative stress mediated by xanthine oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JD Jr, Odunze IN (1991) Oxygen free, radicals and Parkinson’s disease. Free Rad Biol Med 10: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulphide in biological samples. Methods Enzymol 113: 348–355

    Google Scholar 

  • Archibald FS, Tyree C (1987) Manganese poisoning and attack of trivalent manganese upon catecholamines. Arch Biochem Biophys 256: 638–650

    Article  PubMed  CAS  Google Scholar 

  • Awasthi YC, Shivendra VS, Sing R, Abell GW, Gessner W, Brossi A (1987) MPTP metabolites inhibit rat brain glutathione-S-transferase. Neurosci Lett 81: 159–163

    Article  PubMed  CAS  Google Scholar 

  • Becker BP (1993) Towards the physiological function of uric acid. Free Rad Biol Med 14: 615–631

    Article  PubMed  CAS  Google Scholar 

  • Cleeter MWJ, Cooper JM, Schapira AHV (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58: 786–789

    Article  PubMed  CAS  Google Scholar 

  • Desole MS, Esposito G, Enrico, P, Miele M, Fresu L, De Natale G, Miele E, Grella G (1993a) Effects of ageing on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxic effects on striatum and brainstem in the rat. Neurosci Lett 159: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Desole MS, Esposito G, Fresu L, Migheli R, Enrico P, Miele M, De Natale G, Miele E (1993b) Correlation between 1-methyl-4-phenylpyridinium ion (MPP+) levels, ascorbic acid oxidation and glutathione levels in the striatal synaptosomes of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rat. Neurosci Lett 161: 121–123

    Article  PubMed  CAS  Google Scholar 

  • Desole MS, Miele M, Esposito G, Migheli R, Fresu L, Enrico P, De Natale G, Miele E (1994) Monoaminergic systems activity and cellular defense mechanisms in the brainstem of young and aged rats subchronically exposed to manganese. Neurosci Lett (in press)

  • Donaldson J (1987) The physiopathological significance of manganese in brain: its relation to schizophrenia and neurodegenerative disorders. Neurotoxicology 8: 451–462

    PubMed  CAS  Google Scholar 

  • Ferraro TN, Golden GT, DeMattei M, Hare TA, Fariello RG (1986) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on levels of glutathione in the extrapyramidal system of the mouse. Neuropharmacology 9: 1071–1074

    Article  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE (1990) Manganese and calcium efflux kinetics in brain mitochondria. Biochem J 266: 527–535

    Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE (1992) Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol Appl Pharmacol 115: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Graham DG (1978) Oxidative pathways of catecholamine, in the genesis of neuromelanine and cytotoxic quinones. Mol Pharmacol 14: 633–635

    PubMed  CAS  Google Scholar 

  • Graham DG (1984) Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease. Neurotoxicology 5: 113–118

    Google Scholar 

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat (London) 96: 79–88

    CAS  Google Scholar 

  • Jarvis MF, Wagner GC (1990) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in the rat: characterization and age-dependent effects. Synapse 5: 104–112

    Article  PubMed  CAS  Google Scholar 

  • Kontur PJ, Fechter LD (1988) Brain regional manganese levels and monoamine metabolism in manganese-treated neonatal rats. Neurotoxicol Teratol 10: 295–303

    Article  PubMed  CAS  Google Scholar 

  • Liccione JJ, Maines MD (1988) Selective vulnerability of glutathione metabolism and cellular defense mechanism in rat striatum to manganese. J Pharmacol Exp Ther 247: 156–161

    PubMed  CAS  Google Scholar 

  • Lyden A, Larsson BS, Lindquist NG (1984) Melanin affinity to manganese. Acta Pharmacol Toxicol 55: 133–139

    CAS  Google Scholar 

  • Martenson J, Meister A (1991) Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects. Proc Natl Acad Sci 88: 4656–4660

    Article  Google Scholar 

  • Niklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci 36: 2503–2508

    Article  Google Scholar 

  • Parenti M, Rusconi K, Cappabianca W, Parati EA, Groppetti A (1988) Role of dopamine in manganese toxicity. Brain Res 473: 236–240

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch SD, Schmidt B, Reynolds PG, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione and ascorbic acid in parkinsonian brain. J Neurochem 32: 215–220

    Google Scholar 

  • Seth PK, Chandra SV (1984) Neurotransmitters and neurotransmitter receptors in developing and adult rats during manganese poisoning. Neurotoxicology 5: 67–76

    PubMed  CAS  Google Scholar 

  • Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implication for Parkinson’s disease. Proc Natl Acad Sci 87: 1398–1400

    Article  Google Scholar 

  • Vescovi A, Gebbia M, Cappelletti EA, Parati EA, Santagostino A (1989) Interactions of manganese with human brain glutathione-S-transferase. Toxicology 57: 183–191

    Article  PubMed  CAS  Google Scholar 

  • Westerink BHC (1975) The effects of drugs on dopamine biosynthesis and metabolism in the brain. In: Horn AS, Korf J, Westerink BHC (eds) The neurobiology of dopamine. Academic Press, New York, pp 255–294

    Google Scholar 

  • Yong VW, Perry TL, Krisman AA (1986) Depletion of glutathione in brainstem of mice caused by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is prevented by antioxidant pretreatment. Neurosci Lett 63: 56–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desole, M.S., Miele, M., Esposito, G. et al. Dopaminergic system activity and cellular defense mechanisms in the striatum and striatal synaptosomes of the rat subchronically exposed to manganese. Arch Toxicol 68, 566–570 (1994). https://doi.org/10.1007/s002040050115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050115

Key words

Navigation