Skip to main content
Log in

Aluminum effects on blood chemistry and long bone development in the chick embryo

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Body growth, blood chemistry, and long bone development of 10- to 16-day chick embryos (Gallus gallus) treated with aluminum (Al) citrate, sodium (Na) citrate, or sodium chloride (NaCl) were investigated. Two administration protocols were used. Acutely-treated embryos received 6.0 μmol Al citrate or Na citrate on day 8 of incubation. Chronically-treated embryos received a daily dose of 1.5 μmol Al citrate or Na citrate beginning on day 8 of incubation. For both protocols, Al citrate and Na citrate had no significant influence on viability or body weight. Al citrate-treated embryos had: (a) significantly shorter mean tibia lengths by day 16 of incubation, (b) a consistently lower ratio of tibia length: body weight on all days investigated, and (c) a persistent mid-diaphyseal malformation (angulation) of the femur and tibia. Spatially correlated with the malformation was a calcification defect detected by alizarin red S staining of intact tibias and the accumulation of aluminum as demonstrated by acid solochrome azurine staining of histological sections. Aluminum was localized at the mineralization front of the osteogenic collar surrounding the cartilage core of the tibia. Aluminum citrate or Na citrate had no significant effect on serum total calcium, inorganic phosphorus, total alkaline phosphatase activity, or creatinine, except for a transitory hypercalcemia (day 10) and phosphatemia (days 10 and 12) in Al citrate-treated embryos. The concomitant localization of Al and the early calcification defect in the region of tibial malformation implicate aluminum in the pathogenesis of the skeletal abnormality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfrey AC (1989) Physiology of aluminum in man. In: Gitelman HJ (ed) Aluminum and Health, A Critical Review, Marcel Dekker, New York, Basel, pp 101–124.

    Google Scholar 

  • Bennett RW, Persaud TVN, Moore KL (1975) Experimental studies of the effects of aluminum on pregnancy and fetal development. Anat Anz Bd 138: 365–378

    Google Scholar 

  • Bowers GN, McComb, RB (1966) A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clin Chem 12: 70–89

    PubMed  CAS  Google Scholar 

  • Burke B, Narbaitz R, Tolnai S (1979) Abnormal characteristics of the blood from chick embryos maintained in “shell-less” culture. Rev Can Biol 38: 63–66.

    PubMed  CAS  Google Scholar 

  • Cronan CS, Schofield L (1979) Aluminum leaching response to acid precipitation: effects on high elevation watersheds in the Northeast. Science 204: 304–306

    Article  PubMed  CAS  Google Scholar 

  • Daly JA, Ertingshausen G (1972) Direct method for determining inorganic phosphate in serum with the “Centrifchem”. Clin Chem 18: 263–265

    PubMed  CAS  Google Scholar 

  • Denton J, Freemont AJ, Ball J (1984) Detection and distribution of aluminum in bone. J Clin Pathol 37: 136–142.

    Article  PubMed  CAS  Google Scholar 

  • Domingo JL, Paternain JL, Llobet JM (1987) Effects of oral aluminum administration on perinatal and postnatal development in rats. Res Commun Chem Pathol Pharmacol 57: 129–132

    PubMed  CAS  Google Scholar 

  • Ellis HA, McCarthy JH, Herrington J (1979) Bone aluminum in haemodialyzed patients and in rats injected with aluminum chloride: relationship to impaired bone mineralization. J Clin Pathol 32: 832–844.

    Article  PubMed  CAS  Google Scholar 

  • Farley JR, Baylink DJ (1986) Skeletal alkaline phosphatase activity as a bone formation index. Metabolism 35: 563–571.

    Article  PubMed  CAS  Google Scholar 

  • Fauran-Clavel MJ, Oustrin J (1986) Alkaline phosphatase and bone calcium parameters. Bone 7: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Firling CE, Sufka KM, Marko MD, Huntley TE, Severson AR (1991) The influence of aluminum and citrate on embryonic bone calcification. J Bone Min Res 6 [Suppl 1]: S188.

    Google Scholar 

  • Fulton B, Jeffery EH (1990) Absorption and retention of aluminum from drinking water. I. Effect of citrate and ascorbic acids on aluminum tissue levels in rabbits. Fundam Appl Toxicol 14: 788–796

    Article  PubMed  CAS  Google Scholar 

  • Gilani SH, Chatzinoff M (1981) Aluminum poisoning and chick embyrogenesis. Environ Res 24: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Gitelman HJ (eded) (1989). Aluminum and health, a critical review. Marcel Dekker, New York, Basel, pp 1–294

    Google Scholar 

  • Goodman WG (1984) Short-term aluminum administration in the rat: reductions in bone formation without osteomalacia. J Lab Clin Med 103: 749–757

    PubMed  CAS  Google Scholar 

  • Goodman WG (1990) Aluminum metabolism and the uremic patient. In: Simmons DJ (ed) Nutrition and bone development. Oxford University Press, New York, Oxford, pp 269–294.

    Google Scholar 

  • Goodman WG, Galligan J, Horst R (1984a) Short-term aluminum administration in the rat: effects on bone formation and relationship to renal osteomalacia. J Clin Invest 73: 171–181.

    Article  PubMed  CAS  Google Scholar 

  • Goodman WG, Henry DA, Horst R, Nudelman RK, Alfrey AC, Coburn JW (1984b) Parenteral aluminum administration in the dog, II. Induction of osteomalacia and the effect on vitamin D metabolism. Kidney Int 25: 370–375.

    Article  PubMed  CAS  Google Scholar 

  • Greger JL, Powers CF (1992) Assessement of exposure to parenteral and oral aluminum with and without citrate using a desferrioxamine test in rats. Toxicology 76: 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Hahn TJ (1989) Aluminum-related disorders of bone and mineral metabolism. In: Peck WA (ed) Bone and mineral research/6. Elsevier, Amsterdam, New York, Oxford, pp 219–265

    Google Scholar 

  • Kessler G, Wolfman M (1964) An automated procedure for the simultaneous determination of calcium and phosphorus. Clin Chem 10: 686–703.

    PubMed  CAS  Google Scholar 

  • Klein GL, Alfrey AC, Miller NL, Sherrard DJ, Hazlet TK, Ament ME, Coburn JW (1982) Aluminum loading during total parenteral nutrition. Am J Clin Nutr 35: 1425–1429.

    PubMed  CAS  Google Scholar 

  • McCormack KL, Ottosen LD, Sanger VL, Sprague S, Mayor GH, Hook JB (1979) Effect of prenatal administration of aluminum and parathyroid hormone on fetal development in the rat. Proc Soc Exp Biol Med 161: 74–77

    PubMed  CAS  Google Scholar 

  • Meyer JL, Thomas WC (1986) Aluminum and aluminum complexes. Effect on calcium phosphate precipitation. Kidney Internat 29 [Suppl 18]: S20-S23

    CAS  Google Scholar 

  • Miyahara T, Hayashi M, Kozuka H (1984) The effect of aluminum on embryonic chick bone in tissue culture. Toxicol Lett 21: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Narbaitz R, Jande S (1978) Ultrastructural observations on the chorionic epithelium, parathyroid glands and bones from chick embryos development in shell-less culture. J Embryol Exp Morphol 45: 1–12.

    PubMed  CAS  Google Scholar 

  • Ono T, Tuan RS (1986) Effect of experimentally induced calcium deficiency on development, metabolism and liver morphogenesis of the chick embryo. J Embryol Exp Morphol 92: 207–222

    PubMed  CAS  Google Scholar 

  • Ott SM, Maloney NA, Coburn JW, Alfrey AC, Sherrard DJ (1982) The prevalence of bone aluminum deposition in renal osteodystrophy and its relation to the response of calcitrol therapy. N Engl J Med 307: 709–713.

    Article  PubMed  CAS  Google Scholar 

  • Ott SM, Maloney NA, Klein G, Alfrey AC, Ament, ME, Coburn JW, Sherrard DJ (1983) Aluminum is associated with low bone formation in patients receiving chronic parenteral nutrition. Ann Int Med 98: 910–914.

    PubMed  CAS  Google Scholar 

  • Reddi AH, Huggins CB (1975) Formation of bone marrow in fibroblast formation ossicles. Proc Natl Acad Sci USA 72: 2212–2216

    Article  PubMed  CAS  Google Scholar 

  • Sedman A, Klein G, Merritt, Miller N, Weber K, Gill W, Anand H, Alfrey AC (1985) Evidence of aluminum loading in infants receiving intravenous therapy. N Engl J Med 312: 1337–1342.

    PubMed  CAS  Google Scholar 

  • Severson AR, Haut CF, Firling CF, Huntley TE (1992) Influence of short-term aluminum exposure on demineralized bone matrix induced bone formation. Arch Toxicol 66: 706–712

    Article  PubMed  CAS  Google Scholar 

  • Slanina P, Falkeborn Y, Frech W, Cedergren A (1984) Aluminum concentrations in the brain and bone of rats fed citric acid, aluminum citrate or aluminum hydroxide. Food Chem Toxicol 22: 391–397

    Article  PubMed  CAS  Google Scholar 

  • Slania P, Frech W, Bernhardson A, Cedergren A, Mattsson P (1885) Influence of dietary factors on aluminum absorption and retention in the brain and bone of rats. Acta Pharmacol Toxicol 56: 331–336.

    Google Scholar 

  • Thomas WC (1982) Trace metal-citric acid complexes as inhibitors of calcification and crystal formation. Proc Soc Exp Biol Med 170: 321–327

    PubMed  CAS  Google Scholar 

  • Tuan R, Lynch M (1983) Effect of experimentally induced calcium deficiency on the developmental expression of collage types in chick embryonic skeleton. Dev Biol 100: 374–386.

    Article  PubMed  CAS  Google Scholar 

  • Van de Vyver FL, Visser WJ (1990) Aluminum accumulation in bone. In: Priest ND, Van de Vyver FL (eds) Trace metals and fluoride in bone and teeth. CRC Press, Boca Raton, pp 41–81

    Google Scholar 

  • Wide M (1984) Effect of short-term exposure to five industrial metals on the embryonic and fetal development of the mouse. Environ Res 33: 47–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firling, C.E., Severson, A.R. & Hill, T.A. Aluminum effects on blood chemistry and long bone development in the chick embryo. Arch Toxicol 68, 541–547 (1994). https://doi.org/10.1007/s002040050111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050111

Key words

Navigation