Skip to main content

Advertisement

Log in

Mercury toxicokinetics in Wistar rats exposed to elemental mercury vapour: modeling and computer simulation

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The kinetics of total mercury (Hg) absorption, distribution and elimination in Wistar rats exposed for long periods to elemental mercury vapour (Hg°) in the Idrija mercury mine were studied. From the experimental data base a compartmental model was built as a framework for experimental data interpretation and prediction of organ mercury levels under different conditions. Using the model the exposures of rats under conditions comparable to those of professionally exposed workers (mercury miners, workers in the chloralkali industry) and individuals with amalgam fillings were simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berlin M, Fazackerley J, Nordberg G (1969) The uptake of mercury in the brains of mamals exposed to mercury vapour and to mercuric salts. Arch Environ Health 18: 719–729

    PubMed  CAS  Google Scholar 

  • Bernard SR, Perdue P (1984) Metabolic models for methyl and inorganic mercury. Health Phys 46: 695–699

    PubMed  CAS  Google Scholar 

  • Byrne AR, Kosta L (1974) Simultaneous neutron-activation determination of selenium and mercury in biological samples by volatilisation. Talanta 21: 1083–1090

    Article  PubMed  CAS  Google Scholar 

  • Cherian MG, Clarkson TW (1976) Biochemical changes in rat kidney on exposure to elemental mercury vapor: Effect on biosynthesis of metallothionein. Chem-Biol Interact 12: 109–120

    Article  PubMed  CAS  Google Scholar 

  • Cherian MG, Hursh JB, Clarkson TW, Allen J (1978) Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor. Arch Environ Health 33: 109–114

    PubMed  CAS  Google Scholar 

  • Clemente GF (1976) Trace element pathways from environment to men. J Radioanal Chem 32: 25–41

    Article  CAS  Google Scholar 

  • Davidson I, Parker J, Beliles R (1986) Biological basis for extrapolation across mammalian species. Reg Toxicol Pharmacol 6: 211–237

    Article  CAS  Google Scholar 

  • Drasch G, Schupp I, Gunther G (1989) Einfluss von Amalgam-Füllungen auf die Quecksilberkonzentration in der Nierenrinde. In: Anke M, Baumann W, Bräunlich H, Brückner Chr, Groppel B. Grün M (eds) 6th International Trace Element Symposium, vol 5, Jena, pp 1653–1659

  • Eide I, Syversen TLM (1983) Relationship between catalase activity and uptake of elemental mercury by rat brain. Acta Pharmacol Toxicol 52: 217–223

    CAS  Google Scholar 

  • Eley BM (1990) A study of mercury redistribution, excretion and renal pathology in guinea-pigs implanted with powdered dental amalgam for between 2 and 4 years. J Exp Pathol 71: 375–394

    CAS  Google Scholar 

  • Falnoga I (1986) Absorption, distribution and elimination of mercury in experimental animals exposed to mercury vapour. BSc thesis (in Slovenian), University of Ljubljana

  • Falnoga I, Kregar I, Škreblin M, Tušek-Žnidarič M, Stegnar P (1993) Interactions of mercury in rat brain. Biol Trace Elem Res 37: 71–83

    Article  PubMed  CAS  Google Scholar 

  • Farris FF, Dedrick RL, Allen PV, Smith JC (1993) Physiological model for the pharmacokinetics of methyl mercury in the growing rat. Toxicol Appl Pharmacol 119: 74–90

    Article  PubMed  CAS  Google Scholar 

  • Fredin B (1987) The distribution of mercury in various tissues of guinea-pigs after application of dental amalgam filling (a pilot study). Science Total Environ 66: 263–268

    Article  CAS  Google Scholar 

  • Friberg L (1956) Studies on the accumulation, metabolism and excretion of inorganic mercury (Hg203) after prolonged subcutaneous administration to rats. Acta Pharmacol Toxicol 12: 411–427

    CAS  Google Scholar 

  • Friberg L, Mottet NK (1989) Accumulation of methylmercury and inorganic mercury in the brain. Biol Trace Elem Res 21: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Gage JC (1961) The distribution and excretion of inhaled mercury vapour. Br J Industr Med 18: 287–294

    CAS  Google Scholar 

  • Gvardjančič I, Kosta L, Zelenko V (1978) Simplification of a method for determination of methylmercury in biological materials using gas chromatography. Zh Anal Khim 33: 812–815 (in Russian; English translation available)

    Google Scholar 

  • Halbach S, Fichtner R (1993) Generation of radioactive mercury vapor and its application in an exposure system. Toxicol Methods 3: 25–36

    Article  CAS  Google Scholar 

  • Hahn LJ, Kloiber R, Leininger RW, Vimy MJ, Lorscheider FL (1990) Whole-body imaging of the distribution of mercury released from dental fillings into monkey tissues. FASEB J 4: 3256–3260

    PubMed  CAS  Google Scholar 

  • Hahn LJ, Kloiber R, Vimy MJ, Takahashi Y, Lorscheider FL (1989) Dental “silver” tooth fillings: a source of mercury exposure revealed by whole-body image scan and tissue analysis. FASEB J 3: 2641–2646

    PubMed  CAS  Google Scholar 

  • Hayes AD, Rothstein A (1962) The metabolism of inhaled mercury vapor in the rat studied by isotope techniques. J Pharmacol Exp Ther 138: 1–10

    PubMed  CAS  Google Scholar 

  • Heintze U, Edwardsson S, Derand T, Birkhed D (1983) Methylation of mercury from dental amalgam and mercuric chloride by oral streptococci in vitro. Scand J Dent Res 91: 150–152

    PubMed  CAS  Google Scholar 

  • Horvat M, Zvonarič T, Stegnar P (1986) Optimization of a wet digestion method for determination of mercury in blood by cold vapour atomic absorbtion spectrometry (CVAAS) Vestn Slov Kem Drus 33: 475–487

    CAS  Google Scholar 

  • Horvat M, May K, Stoeppler M Byrne AR (1988) Comparative studies of methylmercury determination in biological and environmental samples. Appl Organomet Chem 2: 515–524

    Article  CAS  Google Scholar 

  • Hursh JB, Clarkson TW, Cherian MG, Vostal J, Vander Mallie R (1976) Clearance of mercury (Hg-197, Hg-203) vapor inhaled by human subjects. Arch Environ Health 31: 302–309

    PubMed  CAS  Google Scholar 

  • Hursh JB, Greenwood MR, Clarkson TW, Allen J, Demuth S (1980) The effect of ethanol on the fate of mecury vapor inhaled by man. J Pharmacol Exp Ther 214: 520–527

    PubMed  CAS  Google Scholar 

  • Kägi JHR, Hapke H-J (1984) Biochemical interactions of mercury, cadmium, and lead. In: Nriagu NO (ed) Changing metal cycles and human health. Dahlem Konferenzen 1984, Springer, Berlin Heidelberg New York Tokyo pp 237–250

    Google Scholar 

  • Karba R, Zupančič B, Bremšak F, Mrhar A, Primožič S (1990) Simulation tools in pharmacokinetics modeling. Acta Pharm Jugos 40: 247–262

    CAS  Google Scholar 

  • Khayat A, Dencker L (1984) Organ and cellular distribution of inhaled metallic mercury in the rat and marmoset monkey (Callithrix jacchus): influence of ethyl alcohol pretreatment. Acta Pharmacol Toxicol 55: 145–152

    CAS  Google Scholar 

  • Kishi R, Hashimoto K, Shimizu S, Kobayashi M (1978) Behavioral changes and mercury concentrations in tissues of rats exposed to mercury vapor. Toxicol Appl Pharmacol 46: 555–566

    Article  PubMed  CAS  Google Scholar 

  • Kobal AB (1991) Occupational exposure to elemental mercury and the content of mercury in blood, erythrocytes, plasma, exhaled air and urine and the catalase activity in erythrocytes. Ph. D. Thesis (in Slovene), Medical Faculty, University of Ljubljana

  • Kosta L, Byrne AR, Zelenko V (1975) Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature 254: 238–239

    Article  PubMed  CAS  Google Scholar 

  • Lewi PJ, Marsboom RP (1981) Toxicology reference data — Wistar rat. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Lorscheider FL, Vimy MJ (1991) Mercury exposure from “silver” fillings. Lancet 337: 1103

    Article  PubMed  CAS  Google Scholar 

  • Ludwicki JK (1989) Studies on the role of gastrointestinal tract contents in the methylation of inorganic compounds. Bull Environ Contam Toxicol 42: 283–288

    Article  PubMed  CAS  Google Scholar 

  • Mrhar A, Rubessa F, Karba R, Moneghini M, Primožič S (1990) Pharmacokinetics evaluation of sustained release formulations of theophylline by analog hybrid simulation. Int J Pharm 62: 15–19

    Article  CAS  Google Scholar 

  • Nordberg GF, Serenius F (1969) Distribution of inorganic mercury in the guinea pig brain. Acta Pharmacol Toxicol 27: 269–283

    CAS  Google Scholar 

  • Nylander M (1986) Mercury in pituitary glands of dentists. Lancet 1: 442

    Article  PubMed  CAS  Google Scholar 

  • Nylander M, Weiner J (1991) Mercury and selenium concentrations and their interrelations in organs from dental staff and the general population. Br J Ind Med 48: 729–734

    PubMed  CAS  Google Scholar 

  • Nylander M, Friberg L, Lind B (1987) Mercury concentrations in the human brain and kidneys in relation to exposure from dental amalgam fillings. Swed Dent J 11: 179–187

    PubMed  CAS  Google Scholar 

  • Oberski P, Fang SC (1980) Inhalation uptake of low level elemental mercury vapor and its tissue distribution in rats. Bull Environm Contam Toxicol 25: 9–84

    Article  Google Scholar 

  • Rothstein A, Hayes AD (1960) The metabolism of mercury in the rat studied by isotope techniques. J Pharmacol Exp Ther 130: 166–176

    Google Scholar 

  • Snipes MB, McClellan RO, Mauderly JL, Wolff RK (1989) Retention patterns for inhaled particles in the lung: Comparisons between laboratory animals and humans for chronic exposures. Health Phys 57 [Supp 1]: 69–78

    Article  PubMed  Google Scholar 

  • Störtebecker P (1989) Direct transport of mercury from the oronasal cavity to the cranial cavity as a cause of dental amalgam poisoning. Swed J Biol Med 3: 8–24

    Google Scholar 

  • Suzuki T, Miyama T, Katsunuma H (1966) Affinity of mercury to the thyroid. Ind Health 4: 69–75

    Article  CAS  Google Scholar 

  • Swenson Å, Ulfvarson U (1968) Distribution and excretion of mercury compounds in rats over a long period after a single injection. Acta Pharmacol Toxicol 26: 273–283

    Google Scholar 

  • Thomas DJ, Fisher HL, Sumler MR, Hall LL, Mushak P (1988) Distribution and retention of organic and inorganic mercury in methyl mercury-treated neonatal rats. Environ Res 47: 59–71

    Article  PubMed  CAS  Google Scholar 

  • Vimy MJ, Lorscheider FL (1990) Dental amalgam mercury daily dose estimated from intra-oral vapor measurements: a predictor of mercury accumulation in human tissue. J Trace Elem Exp Med 3: 111–123

    CAS  Google Scholar 

  • Vimy MJ, Luft AJ, Lorscheider FL (1986) Estimation of mercury body burden from dental amalgam: computer simulation of a metabolic compartmental model. J Dent Res 65: 1415–1419

    PubMed  CAS  Google Scholar 

  • Vimy MJ, Takahashi Y, Lorscheider FL (1990) Maternal-fetal distribution of mercury (203Hg) released from dental amalgam fillings. Am J Physiol 258: R939-R945

    PubMed  CAS  Google Scholar 

  • Wisniewska JM, Trojanowska B, Piotrowski J, Jakubowski M (1970) Binding of mercury in the rat kidney by metallothionein. Toxicol Appl Pharmacol 16: 754–763

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (1976) Environmental health criteria 1, mercury. WHO, Geneva.

    Google Scholar 

  • World Health Organisation (WHO) (1991) Environmental health criteria 118, inorganic mercury. WHO, Geneva.

    Google Scholar 

  • Zelenko V, Kosta L (1973) A new method for the isolation of MeHg in biological tissues and its determination at the parts-per-milliard levels by gas chromatography. Talanta 20: 115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the late Mr. Emil Nanut, who cared for the animals and performed the air mercury analyses

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falnoga, I., Mrhar, A., Karba, R. et al. Mercury toxicokinetics in Wistar rats exposed to elemental mercury vapour: modeling and computer simulation. Arch Toxicol 68, 406–415 (1994). https://doi.org/10.1007/s002040050090

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050090

Key words

Navigation