Skip to main content

Advertisement

Log in

Species differences in the biotransformation of ethyl chloride

I. Cytochrome P450-dependent metabolism

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Groups of male and female F-344 rats and B6C3F1 mice were exposed to 15000 ppm ethyl chloride (monochloroethane, ECL) or to air for 5 days (6 h/day). In this report, features of the P450-dependent ECL metabolism in the animals are described. A concurrent report describes the in vitro and in vivo features of the GSH-dependent ECL metabolism (Fedtke et al. 1994). ECL is oxidatively dechlorinated in an NADPH-and O2-dependent reaction, resulting in the formation of acetaldehyde (AC). The oxidative ECL metabolism rates in microsomal incubations were measured. The results indicated induction of the oxidative ECL metabolism by ECL itself in mice and female rats. The hydroxylation ofp-nitrophenol, which was used as an indicator of P450IIE1 activity, was also induced in microsomal incubations from ECL-exposed mice and female rats, but, corresponding to the ECL metabolism, not in male rats. In contrast, catalytic activities related to P450IA and IIB subfamilies were not induced by ECL treatment. Additional experiments with the P450IIE1-specific inhibitor 3-amino-1,2,4-triazole and induction experiments with acetone, phenobarbital and methylcholanthrene confirmed that the isoenzyme mainly involved in the dechlorination reaction is cytochrome P450IIE1. AC was not detected in serum of ECL exposed animals and only slightly enhanced amounts were detected in urine samples from ECL exposed mice, reflecting the high capacities of the AC metabolizing pathways in vivo. The data are discussed with regard to the results of a 2-year bioassay with F-344 rats and B6C3F1 mice exposed to 15 000 ppm ECL (NTP 1989a). In conclusion, the oxidative metabolism is not considered to be a key factor for the induction of the species specific uterine carcinomas in the B6C3F1 mouse observed in this bioassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behrens UJ, Hoerner M, Lasker JM, Lieber CS (1988) Formation of acetaldehyde adducts with ethanol-inducible P-450IIE1 in vivo. Biochem Biophys Res Commun 29: 584–590

    Article  Google Scholar 

  • Brady JF, Li D, Ishikazi H, Lee M, Ning SM, Xiao F, Yang CS (1989) Induction of cytochrome P450IIE1 and P450IIB1 by secondary ketones and the role of P450IIE1 in chloroform metabolism. Toxicol Appl Pharmacol 100: 342–349

    Article  PubMed  CAS  Google Scholar 

  • Burke MD, Mayer RT (1975) Inherent specificities of purified cytochromes P-450 and P-448 towards biphenyl hydroxylation and ethoxyresorufin deethylation. Drug Metab Dispos 3: 245–253

    PubMed  CAS  Google Scholar 

  • Carlson GP (1991) Influence of ethanol and microsomalp-nitrophenol hydroxylation and ethoxyresorufin deethylation in rat liver and lung. J Toxicol Environ Health 32: 153–159

    Article  PubMed  CAS  Google Scholar 

  • DECOS (Dutch Expert Committee on Occupational Standards) (1993) Health based recommended occupational exposure limit for acetaldehyde. DG Labour, Min. Social Affairs and Employment, Den Haag, Netherlands

    Google Scholar 

  • Ebert R, Fedtke N, Certa H, Wiegand HJ, Régnier JF, Marshall R, Dean SW, Kirkland DJ (1994) Genotoxicity studies with chloroethane. Mutat Res (in press)

  • Elves RG, Ueng TH, Alvares AP (1984) Comparative effects of ethanol administration on hepatic monooxygenases in rats and mice. Arch Toxicol 55: 258–264

    Article  PubMed  CAS  Google Scholar 

  • EPA (1983a) DNA repair tests of 11 chlorinated hydrocarbon analogs to determine potential carcinogenicity. EPA Doc. No. 40-8324292, Microfiche No. OTS 0509403

  • EPA (1983b) Cell transformation assays of 11 chlorinated hydrocarbon analogs. EPA Doc. No. 40-8324457, Microfiche No. OTS 0509392

  • EPA (187) Mutagenic activity of chloroethane in the salmonella/microsome assay with attachments, submitted to EPA by E. I. Dupont de Nemours & Co., Doc. No. 86-870000986, Microfiche No. OTS 0517038

  • Fedtke N, Certa H, Ebert R, Wiegand HJ (1994) Species differences in the biotransformation of ethyl chloride: II. GSH-dependent metabolism. Arch Toxicol (in press)

  • Gargas ML, Clewell HJ III, Andersen ME (1990) Gas uptake inhalation techniques and the rates of metabolism of chloromethanes, chloroethanes, and chloroethylenes in the rat. Inhalation Toxicol 2: 295–319

    Article  CAS  Google Scholar 

  • Gonzalez FJ (1989) The molecular biology of cytochrome P450s. Pharmacol Rev 40: 243–288

    Google Scholar 

  • Guengerich FP (1991) Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 4: 391–407

    Article  PubMed  CAS  Google Scholar 

  • Henderson VE (1930) Anaesthetic toxicity. Arch Int Pharmacodyn Ther 38: 150–165

    CAS  Google Scholar 

  • Hobara N, Watanabe A, Kobayashi M, Nakatsukasa H, Nagashima H, Fukuda T, Araki Y (1985) Tissue distribution of acetaldehyde in rats following acetaldehyde inhalation and intragastric ethanol administration. Bull Environ Contam Toxicol 35: 393–396

    Article  PubMed  CAS  Google Scholar 

  • Ivanetich KM, Van Den Honert LH (1981) Chloroethanes: their metabolism by hepatic cytochrome P-450 in vitro. Carcinogenesis 2: 697–702

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Novak RF (1993) The induction of cytochrome P4502E1 by nitrogen-and sulfur-containing heterocycles: expression and molecular regulation. Toxicol Appl Pharmacol 120: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Koop DR (1990) Inhibition of ethanol-inducible cytochrome P450IIE1 by 3-amino-1,2,4-triazole. Chem Res Toxicol 3: 377–383

    Article  PubMed  CAS  Google Scholar 

  • koop DR, Laethem CL, Tierney DJ (1989) The utility ofp-nitrophenol hydroxylation in P450IIE1 analysis. Drug Metab Rev 20: 541–551

    Article  PubMed  CAS  Google Scholar 

  • Landry TD, Ayres JA, Johnson KA, Wall JM (1982) Ethyl chloride: a two-week inhalation toxicity study and effects on liver non-protein sulfhydryl concentrations. Fundam Appl Toxicol 2: 230–234

    Article  PubMed  CAS  Google Scholar 

  • Landry TD, Johnson KA, Phillips JE, Weiss SK (1989) Ethyl chloride: 11-day continuous exposure inhalation toxicity study in B6C3F1 mice. Fundam Appl Toxicol 13: 516–522

    Article  PubMed  CAS  Google Scholar 

  • Lazarew NW (1929) Über die narkotische Wirkungskraft der Dämpfe der Chlorderivate des Methans, des Äthans und des Äthylens. Naunyn-Schmiedebergs Arch Exp Pharmacol 141: 19–24

    Article  Google Scholar 

  • Lieber CS, Hasumura Y, Tescke R, Matsuzaki S, Korsten M (1975) The effect of chronic ethanol consumption on acetaldehyde metabolism. In: Lindros KO, Eriksson CJP (eds) The role of acetaldehyde in the actions of ethanol. The Finnish Foundation for Alcohol Studies 23, pp 83–104

  • Loew GH, Rebagliati M, Poulson M (1984) Metabolism and relative carcinogenic potency of chloroethanes: a quantum chemical structure activity study. Cancer Biochem Biophys 7: 109–132

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AC, Randell RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Lubet RA, Mayer RT, Cameron JW, Nims RW, Burke MD, Wolff T, Guengerich FP (1985) Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome (s) P-450 by PB and other xenobiotics in the rat. Arch Biochem Biophys 238: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Lundquis F, Fugman U, Rasmussen H, Svendsen I (1962) The metabolism of acetaldehyde in mammalian tissues. Biochem J 84: 281–286

    Google Scholar 

  • Mauch TJ, Donohue TM, Zetterman RK, Sorrell MF, Tuma DJ (1986) Covalent binding of acetaldehyde selectively inhibits the catalytic activity of lysine-dependent enzymes. Hepatology 6: 263–269

    Article  PubMed  CAS  Google Scholar 

  • Milman HA, Story DL, Riccio ES, Sivak A, Tu AS, Williams GM, Tong C, Tyson CA (1988) Rat liver foci and in vitro assays to detect initiating and promoting effects of chlorinated ethanes and ethylenes. Ann NY Acad Sci 534: 521–530

    Article  PubMed  CAS  Google Scholar 

  • Neimelä O, Israel Y, Mizoi Y, Fukunaga T, Eriksson CJP (1990) Hemoglobin-acetaldehyde adducts in human volunteers following acute ethanol ingestion. Alcohol Clin Exp Res 14: 838–841

    Article  Google Scholar 

  • Nomura F, Lieber CS (1981) Binding of acetaldehyde to rat liver microsomes: enhancement after chronic alcohol consumption. Biochem Biophys Res Commun 100: 131–137

    Article  PubMed  CAS  Google Scholar 

  • NTP (1989a) Technical report series No. 346. Toxicology and carcinogenesis studies of chloroethane (ethyl chloride, CAS No. 75-00-3) in F344/N rats and B6C3F1 mice. National Toxicology Program, NIH Publication No. 90-2801, US Department of Health and Human Services

  • NTP (1989b) Technical report series No. 363. Toxicology and carcinogenesis studies of bromoethane (ethyl bromide, CAS no. 74-96-4) in F-344/N rats and B6C3F1 mice. National Toxicology Program, NIH Publication No. 89-2801, US Department of Health and Human Services

  • Okey AB (1990) Enzyme induction in the cytochrome P-450 system. Pharmacol Ther 45: 241–298

    Article  PubMed  CAS  Google Scholar 

  • Olson MJ, Kim SG, Reidy CA, Johnson JT, Novak RF (1991) Oxidation of 1, 1, 1, 2-tetrafluoroethane in rat liver microsomes is catalyzed primarily by cytochrome P-450IIE1. Drug Metab Dispos 19: 298–303

    PubMed  CAS  Google Scholar 

  • Parke DV, Ioannides C, Lewis DFV (1991) The role of cytochrome P450 in the detoxication and activation of drugs and other chemicals. Can J Physiol Pharmacol 69: 537–549

    PubMed  CAS  Google Scholar 

  • Puccini P, Fiorio R, Longo V, Gervasis PG (1990) Effects of acetone administration on drug-metabolizing enzymes in mice: presence of a high affinity diethylnitrosamine de-ethylase. Toxicol Lett 54: 143–150

    Article  PubMed  CAS  Google Scholar 

  • Reinke AR, Moyer MJ (1985)p-Nitrophenol hydroxylation. A microsomal oxidation which is highly inducible by ethanol. Drug Metab Dispos 13: 548–552

    PubMed  CAS  Google Scholar 

  • Riccio E, Griffin A, Mortelmans K (1983) A comparative mutagenicity study of volatile halogenated hydrocarbons using different metabolic activation systems. Environ Mutagen 5: 472

    Google Scholar 

  • Rutten AAJJL, Falke HE, Catsburg JF, Topp R, Blaauboer BJ, van Holsteijn I, Doorn L, Leeuwen FXR (1987) Interlaboratory comparisons of total cytochrome P-450 and protein determinations in rat liver microsomes. Arch Toxicol 61: 27–33

    Article  PubMed  CAS  Google Scholar 

  • Tachizawa H, MacDonald TL, Neal RA (1982) Rat liver microsomal metabolism of propyl halides. Mol Pharmacol 22: 745–751

    PubMed  CAS  Google Scholar 

  • Terelius Y, Norsten Höög C, Cronholm T, Ingelman-Sundberg M (1991) Acetaldehyde as a substrate for ethanol-inducible cytochrome P450 (CYP2E1). Biochem Biophys Res Commun 179: 689–684

    Article  PubMed  CAS  Google Scholar 

  • Troshina MM (1966) Some materials for substantiating the maximum permissible concentration of ethyl chloride in the atmosphere of work premises (in Russian) Gigienda Tr Prof Zabol 10: 37–42

    CAS  Google Scholar 

  • Tu AS, Murray TA, Hatch KM, Sivak A, Milman HA (1985) In vitro transformation of Balb/c-3T3 cells by chlorinated ethanes and ethylenes. Cancer Lett 28: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Tuma DJ, Newman MR, Donohue TM Jr, Sorrel MF (1987) Covalent binding of acetaldehyde to proteins: participation of lysine residues. Alcohol Clin Exp Res 11: 579–584

    Article  PubMed  CAS  Google Scholar 

  • Ueng TH, Tsai JN, Ju JM, Ueng YF, Iwasaki M, Guengerich FP (1991) Effects of acetone administration on cytochrome P-450-dependent monooxygenases in hamster liver, kidney, and lung. Arch Toxicol 65: 45–51

    Article  PubMed  CAS  Google Scholar 

  • Van Dyke RA, Wineman CG (1971) Enzymatic dechlorination. Dechlorination of chloroethanes and propanes in vitro. Biochem Pharmacol 29: 463–470

    Google Scholar 

  • Weiner H (1979) Acetaldehyde metabolism. In: Majchnowicz E Biochemistry and pharmacology of ethanol, Vol. 1. Plenum, New York, pp 125–144

    Google Scholar 

  • Yang CS, Yoo JSH, Ishizaki H, Hong J (1990) Cytochrome P450IIE1: roles in nitrosamine metabolism and mechanisms of regulation Drug Metab Rev 22: 147–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedtke, N., Certa, H., Ebert, R. et al. Species differences in the biotransformation of ethyl chloride. Arch Toxicol 68, 158–166 (1994). https://doi.org/10.1007/s002040050049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050049

Key words

Navigation