Skip to main content
Log in

The rat acute oral toxicity of trifluoromethyl compounds (TFMs): a computational toxicology study combining the 2D-QSTR, read-across and consensus modeling methods

  • In silico
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

All areas of the modern society are affected by fluorine chemistry. In particular, fluorine plays an important role in medical, pharmaceutical and agrochemical sciences. Amongst various fluoro-organic compounds, trifluoromethyl (CF3) group is valuable in applications such as pharmaceuticals, agrochemicals and industrial chemicals. In the present study, following the strict OECD modelling principles, a quantitative structure–toxicity relationship (QSTR) modelling for the rat acute oral toxicity of trifluoromethyl compounds (TFMs) was established by genetic algorithm-multiple linear regression (GA-MLR) approach. All developed models were evaluated by various state-of-the-art validation metrics and the OECD principles. The best QSTR model included nine easily interpretable 2D molecular descriptors with clear physical and chemical significance. The mechanistic interpretation showed that the atom-type electro-topological state indices, molecular connectivity, ionization potential, lipophilicity and some autocorrelation coefficients are the main factors contributing to the acute oral toxicity of TFMs against rats. To validate that the selected 2D descriptors can effectively characterize the toxicity, we performed the chemical read-across analysis. We also compared the best QSTR model with public OPERA tool to demonstrate the reliability of the predictions. To further improve the prediction range of the QSTR model, we performed the consensus modelling. Finally, the optimum QSTR model was utilized to predict a true external set containing many untested/unknown TFMs for the first time. Overall, the developed model contributes to a more comprehensive safety assessment approach for novel CF3-containing pharmaceuticals or chemicals, reducing unnecessary chemical synthesis whilst saving the development cost of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are included in this paper or from the corresponding author on reasonable request.

Abbreviations

TFMs:

Trifluoromethyl compounds

CF3 :

Trifluoromethyl

QST(A)R:

Quantitative structure–toxicity(activity) relationship

RA:

Read-across

PFAS:

Per- and polyfluoroalkyl substances

REACH:

Registration, Evaluation, Authorisation and Restriction of chemicals

GA-MLR:

Genetic algorithm-multiple linear regression

OECD:

Organization for Economic Co-Operation and Development

ATSDR:

Agency for Toxicity Substances and Disease Registry

CSTEE:

Commission’s Scientific Committee on Toxicity, Ecotoxicity and the Environment

LD50:

Median lethal dose

ORes:

Ordered by response values

PC1:

The first-axis principal component

OStr:

Ordered by structure similarity

Rnd:

Complete random division

AD:

Applicability domain

OLS:

Ordinary least squares

\({Q}_{{\text{LOO}}}^{2}\) :

Leave-one-out cross-validation coefficient

\({Q}_{{\text{LMO}}}^{2}\) :

Leave-many-out cross-validation coefficients

CCCtest :

Concordance correlation coefficient

MAEtest :

Mean absolute error

RMSEtest :

Root mean square error

MCDM:

Multi-criteria decision-making

GK:

Gaussian kernel

LK:

Laplacian kernel

ED:

Euclidean distance

SM:

Single model

CMs:

Consensus models

OPERA:

Open Structure–Activity/Property Relationship App

NTP:

National Toxicology Program

NICEATM:

NTP Interagency Center for the Evaluation of Alternative Toxicological Methods

NCCT:

National Centre for Computational Toxicology

CATMoS:

Collaborative Acute Toxicity Modeling Suite

PRI:

Prediction Reliability Indicator

TSR:

Training set range

VIP:

Variable importance plot

References

  • Adeniji SE, Uba S, Uzairu A (2018) QSAR modeling and molecular docking analysis of some active compounds against mycobacterium tuberculosis receptor (Mtb CYP121). J Pathog 2018:1018694

    Article  PubMed  PubMed Central  Google Scholar 

  • Balderas E, Ateaga-Tlecuitl R, Rivera M, Gomora JC, Darszon A (2012) Niflumic acid blocks native and recombinant T-type channels. J Cell Physiol 227(6):2542–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Chatterjee M, De P, Roy K (2022a) Quantitative predictions from chemical read-across and their confidence measures. Chemom Intell Lab 227:104613

    Article  CAS  Google Scholar 

  • Banerjee A, De P, Kumar V, Kar S, Roy K (2022b) Quick and efficient quantitative predictions of androgen receptor binding affinity for screening endocrine disruptor chemicals using 2D-QSAR and chemical read-across. Chemosphere 309:136579

    Article  CAS  PubMed  Google Scholar 

  • Bitam S, Hamadache M, Salah H (2020) 2D QSAR studies on a series of (4S,5R)-5-[3,5-bis(trifluoromethyl)phenyl]-4-methyl-1,3-oxazolidin-2-one as CETP inhibitors. SAR QSAR Environ Res 31(6):423–438

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Banerjee A, De P, Gajewicz-Skretna A, Roy K (2022) A novel quantitative read-across tool designed purposefully to fill the existing gaps in nanosafety data. Environ Sci Nano 9(1):189–203

    Article  CAS  Google Scholar 

  • Chatterjee M, Banerjee A, Tosi S, Carnesecchi E, Benfenati E, Roy K (2023) Machine learning-based q-RASAR modeling to predict acute contact toxicity of binary organic pesticide mixtures in honey bees. J Hazard Mater 460:132358

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yang H, Wu Z, Liu G, Tang Y, Li W (2018) Prediction of Farnesoid X receptor disruptors with machine learning methods. Chem Res Toxicol 31(11):1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Li FF, Sun GH, Zhao LJ, Zhong RG (2021) QSAR modeling and its advances in antiviral drug design and screening. Chem Reagents 43(7):895–905. https://doi.org/10.13822/j.cnki.hxsj.2021008038

    Article  Google Scholar 

  • Chen S, Sun G, Fan T et al (2023) Ecotoxicological QSAR study of fused/non-fused polycyclic aromatic hydrocarbons (FNFPAHs): assessment and priority ranking of the acute toxicity to Pimephales promelas by QSAR and consensus modeling methods. Sci Total Environ 876:162736

    Article  CAS  PubMed  Google Scholar 

  • Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51(9):2320–2335

    Article  CAS  PubMed  Google Scholar 

  • Chirico N, Gramatica P (2012) Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model 52(8):2044–2058

    Article  CAS  PubMed  Google Scholar 

  • Cronin MTD, Walker JD, Jaworska JS, Comber MHI, Watts CD, Worth AP (2003) Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 111(10):1376–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragon (2023) Dragon for windows (software for molecular descriptor calculation) version 7.0.6, Talete srl, Milan, Italy. https://chm.kode-solutions.net/. Accessed 25 Sept 2023

  • Du HW, Cai YC, Yang HB et al (2017) In silico prediction of chemicals binding to aromatase with machine learning methods. Chem Res Toxicol 30(5):1209–1218

    Article  CAS  PubMed  Google Scholar 

  • ECHA (2020) The use of alternatives to testing on animals for the reach regulation. European Chemicals Agency (ECHA). https://data.europa.eu/doi/10.2823/092305. Accessed 29 Jan 2024

  • Escher SE, Kamp H, Bennekou SH et al (2019) Towards grouping concepts based on new approach methodologies in chemical hazard assessment: the read-across approach of the EU-ToxRisk project. Arch Toxicol 93(12):3643–3667

    Article  CAS  PubMed  Google Scholar 

  • EU (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH). EU CEC, Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1907-20231201. Accessed 29 Jan 2024

  • Golbraikh A, Tropsha A (2002) Beware of q(2)! J Mol Graph 20(4):269–276

    Article  CAS  Google Scholar 

  • Gramatica P (2020) Principles of QSAR modeling: comments and suggestions from personal experience. Int J Quant Struct Prop Relatsh 5(3):61–97

    Google Scholar 

  • Gramatica P, Sangion A (2016) A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J Chem Inf Model 56(6):1127–1131

    Article  CAS  PubMed  Google Scholar 

  • Gramatica P, Cassani S, Roy PP, Kovarich S, Yap CW, Papa E (2012) QSAR modeling is not “push a button and find a correlation”: a case study of toxicity of (benzo-) triazoles on algae. Mol Inform 31(11–12):817–835

    Article  CAS  PubMed  Google Scholar 

  • Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34(24):2121–2132

    Article  CAS  Google Scholar 

  • Gramatica P, Cassani S, Chirico N (2014) QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem 35(13):1036–1044

    Article  CAS  PubMed  Google Scholar 

  • Gramatica P, Cassani S, Sangion A (2016) Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives’ design. Green Chem 18(16):4393–4406

    Article  CAS  Google Scholar 

  • Hagmann WK (2008) The many roles for fluorine in medicinal chemistry. J Med Chem 51(15):4359–4369

    Article  CAS  PubMed  Google Scholar 

  • Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comp Sci 35(6):1039–1045

    Article  CAS  Google Scholar 

  • Hao YX, Sun GH, Fan TJ et al (2020) In vivo toxicity of nitroaromatic compounds to rats: QSTR modelling and interspecies toxicity relationship with mouse. J Hazard Mater 399:122981

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Fan T, Sun G et al (2022) Environmental toxicity risk evaluation of nitroaromatic compounds: machine learning driven binary/multiple classification and design of safe alternatives. Food Chem Toxicol 170:113461

    Article  CAS  PubMed  Google Scholar 

  • Harada T, Nakagawa Y, Wadkins RM, Potter PM, Wheelock CE (2009) Comparison of benzil and trifluoromethyl ketone (TFK)-mediated carboxylesterase inhibition using classical and 3D-quantitative structure-activity relationship analysis. Bioorg Med Chem 17(1):149–164

    Article  CAS  PubMed  Google Scholar 

  • Kareem RT, Azizi B, Asnaashariisfahani M, Ebadi A, Vessally E (2021) Vicinal Halo-Trifluoromethylation of Alkenes. RSC Adv 11(25):14941–14955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80(5):8091–8126

    Article  PubMed  Google Scholar 

  • Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. New York: Academic Press. https://www.sciencedirect.com/bookseries/medicinal-chemistry/vol/14. Accessed 29 Jan 2024

  • Lawal HA, Uzairu A, Uba S (2021) QSAR, molecular docking studies, ligand-based design and pharmacokinetic analysis on Maternal Embryonic Leucine Zipper Kinase (MELK) inhibitors as potential anti-triple-negative breast cancer (MDA-MB-231 cell line) drug compounds. Bull Natl Res Cent 45(1):90

    Article  Google Scholar 

  • Lehmann F (1928) Chemical constitution and activity. Aromatic fluorine compounds. Arch Exp Pathol Pharmakol 130:250

    Article  CAS  Google Scholar 

  • Li XQ, Andersson TB, Ahlström M, Weidolf L (2004) Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos 32(8):821–827

    Article  CAS  PubMed  Google Scholar 

  • Li F, Fan T, Sun G, Zhao L, Zhong R, Peng Y (2022) Systematic QSAR and iQCCR modelling of fused/non-fused aromatic hydrocarbons (FNFAHs) carcinogenicity to rodents: reducing unnecessary chemical synthesis and animal testing. Green Chem 24(13):5304–5319

    Article  CAS  Google Scholar 

  • Li F, Sun G, Fan T et al (2023) Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: consensus modelling and comparison with ECOSAR. Aquat Toxicol 255:106393

    Article  CAS  PubMed  Google Scholar 

  • Li YS, Fan TJ, Ren T et al (2024a) Ecotoxicological risk assessment of pesticides against different aquatic and terrestrial species: using mechanistic QSTR and iQSTTR modelling approaches to fill the toxicity data gap. Green Chem 26(2):839–856

    Article  CAS  Google Scholar 

  • Li F, Wang P, Fan T et al (2024b) Prioritization of the ecotoxicological hazard of PAHs towards aquatic species spanning three trophic levels using 2D-QSTR, read-across and machine learning-driven modelling approaches. J Hazard Mater 465:133410

    Article  CAS  PubMed  Google Scholar 

  • Mansouri K, Grulke CM, Judson RS, Williams AJ (2018) OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminformatics 10:10

    Article  Google Scholar 

  • Mansouri K, Karmaus AL, Fitzpatrick J et al (2021) CATMoS: collaborative acute toxicity modeling suite. Environ Health Perspect 129(4):047013

    Article  PubMed  PubMed Central  Google Scholar 

  • Meanwell NA (2018) Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J Med Chem 61(14):5822–5880

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee RK, Kumar V, Roy K (2022) Ecotoxicological QSTR and QSTTR modeling for the prediction of acute oral toxicity of pesticides against multiple avian species. Environ Sci Technol 56(1):335–348

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Ojha PK, Roy K (2023) Computational modeling of aquatic toxicity of polychlorinated naphthalenes (PCNs) employing 2D-QSAR and chemical read-across. Aquat Toxicol 257:106429

    Article  CAS  PubMed  Google Scholar 

  • NTP (2024) Predictive models for acute oral systemic toxicity. https://ntp.niehs.nih.gov/go/tox-models. Accessed 29 Jan 2024

  • OECD (2007) Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. OECD series on testing and assessment, No. 69. Paris: OECD Publishing. https://www.oecd.org/env/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models-9789264085442-en.htm. Accessed 29 Jan 2024

  • Panieri E, Baralic K, Djukic-Cosic D, Djordjevic AB, Saso L (2022) PFAS molecules: a major concern for the human health and the environment. Toxics 10(2):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penning TD, Talley JJ, Bertenshaw SR et al (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl benzenesulfonamide (SC-58635, Celecoxib). J Med Chem 40(9):1347–1365

    Article  CAS  PubMed  Google Scholar 

  • Romero AH (2019) Role of trifluoromethyl substitution in design of antimalarial quinolones: a comprehensive review. Topics Curr Chem 377(2):9

    Article  Google Scholar 

  • Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33

    Article  CAS  Google Scholar 

  • Roy K, Ambure P, Kar S, Ojha PK (2018a) Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J Chemometr 32(4):e2992

    Article  Google Scholar 

  • Roy K, Ambure P, Kar S (2018b) How precise are our quantitative structure-activity relationship derived predictions for new query chemicals? ACS Omega 3(9):11392–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy J, Ghosh S, Ojha PK, Roy K (2019) Predictive quantitative structure–property relationship (QSPR) modeling for adsorption of organic pollutants by carbon nanotubes (CNTs). Environ Sci Nano 6(1):224–247

    Article  CAS  Google Scholar 

  • Rücker C, Rücker G, Meringer M (2007) Y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model 47(6):2345–2357

    Article  PubMed  Google Scholar 

  • Shabir G, Saeed A, Zahid W et al (2023) Chemistry and pharmacology of fluorinated drugs approved by the FDA (2016–2022). Pharmaceuticals 16(8):1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KP, Gupta S (2014) Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Adv 4(26):13215–13230

    Article  CAS  Google Scholar 

  • Strickland J, Clippinger AJ, Brown J et al (2018) Status of acute systemic toxicity testing requirements and data uses by US regulatory agencies. Regul Toxicol Pharmacol 94:183–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Studer A (2012) A “renaissance” in radical trifluoromethylation. Angew Chem Int Edit 51(36):8950–8958

    Article  CAS  Google Scholar 

  • Sun GH, Fan TJ, Sun XD, Hao YX, Cui X, Zhao LJ, Ren T, Zhou Y, Zhong RG, Peng YZ (2018) In silico prediction of O-6-Methylguanine-DNA methyltransferase inhibitory potency of base analogs with QSAR and machine learning methods. Molecules 23(11):2892

  • Sun G, Zhang Y, Pei L et al (2021) Chemometric QSAR modeling of acute oral toxicity of polycyclic aromatic hydrocarbons (PAHs) to rat using simple 2D descriptors and interspecies toxicity modeling with mouse. Ecotox Environ Safe 222:112525

    Article  CAS  Google Scholar 

  • Sun G, Bai P, Fan T et al (2023) QSAR and chemical read-across analysis of 370 potential MGMT inactivators to identify the structural features influencing inactivation potency. Pharmaceutics 15(8):2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodoridis G (2006) Chapter 4 Fluorine-containing agrochemicals: an overview of recent developments. In: Tressaud A (ed) Advances in fluorine science. Elsevier, pp 121–175

    Google Scholar 

  • Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics: volume I: alphabetical listing/volume II: appendices, references. John Wiley & Sons

    Google Scholar 

  • Todeschini R, Consonni V, Maiocchi A (1999) The K correlation index: theory development and its application in chemometrics. Chemom Intell Lab Syst 46:13–29

    Article  CAS  Google Scholar 

  • Todeschini R, Consonni V, Gramatica P (2009) 4.05 – Chemometrics in QSAR. In: Brown SD, Tauler R, Walczak B (eds) Comprehensive chemometrics. Elsevier, Oxford, pp 129–172. https://doi.org/10.1016/B978-044452701-1.00007-7

    Chapter  Google Scholar 

  • Topliss JG, Costello RJ (1972) Change correlations in structure-activity studies using multiple regression analysis. J Med Chem 15(10):1066–1068

    Article  CAS  PubMed  Google Scholar 

  • Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29(6–7):476–488

    Article  CAS  PubMed  Google Scholar 

  • Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22(1):69–77

    Article  CAS  Google Scholar 

  • Tuan NM, Lee CH (2019) Penfluridol as a candidate of drug repurposing for anticancer agent. Molecules 24(20):3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang BC, Wang LJ, Jiang B et al (2017) Application of fluorine in drug design during 2010–2015 years: a mini-review. Mini Rev Med Chem 17(8):683–692

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Fan T, Jia R et al (2024) First report on the QSAR modelling and multistep virtual screening of the inhibitors of nonstructural protein Nsp14 of SARS-CoV-2: reducing unnecessary chemical synthesis and experimental tests. Arab J Chem 17(3):105614

    Article  CAS  Google Scholar 

  • Wong DT, Perry KW, Bymaster FP (2005) The discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 4(9):764–774

    Article  CAS  PubMed  Google Scholar 

  • Wu ZB, Park HY, Xie DW et al (2021) Synthesis, biological evaluation, and 3D-QSAR studies of N-(substituted pyridine-4-yl)-1-(substituted phenyl)-5-trifluoromethyl-1H-pyrazole-4-carboxamide derivatives as potential succinate dehydrogenase inhibitors. J Agric Food Chem 69(4):1214–1223

    Article  CAS  PubMed  Google Scholar 

  • Xiao HW, Zhang ZZ, Fang YW, Zhu L, Li CZ (2021) Radical trifluoromethylation. Chem Soc Rev 50(11):6308–6319

    Article  CAS  PubMed  Google Scholar 

  • Yakubov S, Barham JP (2020) H Photosensitized direct C-H fluorination and trifluoromethylation in organic synthesis. Beilstein J Org Chem 16:2151–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yale HL (1958) The trifluoromethyl group in medical chemistry. J Med Chem 1(2):121–133

    Article  Google Scholar 

  • Yang L, Wang Y, Hao W et al (2020) Modeling pesticides toxicity to Sheepshead minnow using QSAR. Ecotox Environ Safe 193:110352

    Article  CAS  Google Scholar 

  • Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received support from the Beijing Natural Science Foundation (No. 7242193, 7222016), the National Natural Science Foundation of China (No. 82003599) and the Project of Cultivation for young top-motch Talents of Beijing Municipal Institutions (No. BPHR202203016). The authors express their sincere gratitude to Prof. Gramatica at the University of Insubria (Varese, Italy) for granting permission to use the QSARINS 2.2.4 software and to Prof. Roy at Jadavpur University (Kolkata, India) for permitting the use of the ‘PRI’ tools.

Author information

Authors and Affiliations

Authors

Contributions

Xinyi Lu: methodology, formal analysis and investigation and writing—original draft; Xin Wang: formal analysis and investigation and writing—review and editing; Shuo Chen: methodology and supervision; Tengjiao Fan: resources; Lijiao Zhao: writing—review and editing; Rugang Zhong: supervision; Guohui Sun: conceptualization, funding acquisition and writing—review and editing.

Corresponding author

Correspondence to Guohui Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This manuscript is an in silico toxicology study and does not require the approval of ethics committees.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Wang, X., Chen, S. et al. The rat acute oral toxicity of trifluoromethyl compounds (TFMs): a computational toxicology study combining the 2D-QSTR, read-across and consensus modeling methods. Arch Toxicol (2024). https://doi.org/10.1007/s00204-024-03739-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00204-024-03739-w

Keywords

Navigation