Skip to main content

Advertisement

Log in

Divinyl sulfone, an oxidative metabolite of sulfur mustard, induces caspase-independent pyroptosis in hepatocytes

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Sulfur mustard (SM) is a highly toxic blister agent which has been used many times in several wars and conflicts and caused heavy casualties. Ease of production and lack of effective therapies make SM a potential threat to public health. SM intoxication causes severe damage on various target organs, such as the skin, eyes, and lungs. In addition, SM exposure can also lead to hepatotoxicity and severe liver injuries. However, despite decades of research, the molecular mechanism underlying SM-induced liver damage remains obscure. SM can be converted into various products via complex hepatic metabolism in vivo. There are some pieces of evidence that one of the oxidation products of SM, divinyl sulfone (DVS), exhibits even more significant toxicity than SM. Nevertheless, the molecular toxicology of DVS is still hardly known. In the present study, we confirmed that DVS is even more toxic than SM in the human hepatocellular carcinoma cell line HepG2. Further mechanistic study revealed that DVS exposure (200 μM) promotes pyroptosis in HepG2 cells, while SM (400 μM) mainly induces apoptosis. DVS induces gasdermin D (GSDMD) mediated pyroptosis, which is independent of caspases activation but depends on the large amounts of reactive oxygen species (ROS) and severe oxidative stress produced during DVS exposure. Our findings may provide novel insights for understanding the mechanism of SM poisoning and may be helpful to discover promising therapeutic strategies for SM intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data is contained within the article. Further inquiries can be directed to the corresponding authors.

References

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21974151, 81803567) and the Key Project of National Key Research and Development Program (No. 2018YFC1602600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Xu or Jianwei Xie.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ma, B., Xu, H. et al. Divinyl sulfone, an oxidative metabolite of sulfur mustard, induces caspase-independent pyroptosis in hepatocytes. Arch Toxicol 98, 897–909 (2024). https://doi.org/10.1007/s00204-023-03662-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-023-03662-6

Keywords

Navigation