Skip to main content
Log in

Evaluation of neurological behavior alterations and metabolic changes in mice under chronic glyphosate exposure

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Glyphosate is a widely used active ingredient in agricultural herbicides, inhibiting the biosynthesis of aromatic amino acids in plants by targeting their shikimate pathway. Our gut microbiota also facilitates the shikimate pathway, making it a vulnerable target when encountering glyphosate. Dysbiosis in the gut microbiota may impair the gut–brain axis, bringing neurological outcomes. To evaluate the neurotoxicity and biochemical changes attributed to glyphosate, we exposed mice with the reference dose (RfD) set by the U.S. EPA (1.75 mg/Kg-BW/day) and its hundred-time-equivalence (175 mg/Kg-BW/day) chronically via drinking water, then compared a series of neurobehaviors and their fecal/serum metabolomic profile against the non-exposed vehicles (n = 10/dosing group). There was little alteration in the neurobehavior, including motor activities, social approach, and conditioned fear, under glyphosate exposure. Metabolomic differences attributed to glyphosate were observed in the feces, corresponding to 68 and 29 identified metabolites with dysregulation in the higher and lower dose groups, respectively, compared to the vehicle-control. There were less alterations observed in the serum metabolome. Under 175 mg/Kg-BW/day of glyphosate exposure, the aromatic amino acids (phenylalanine, tryptophan, and tyrosine) were reduced in the feces but not in the serum of mice. We further focused on how tryptophan metabolism was dysregulated based on the pathway analysis, and identified the indole-derivatives were more altered compared to the serotonin and kynurenine derivatives. Together, we obtained a three-dimensional data set that records neurobehavioral, fecal metabolic, and serum biomolecular dynamics caused by glyphosate exposure at two different doses. Our data showed that even under the high dose of glyphosate irrelevant to human exposure, there were little evidence that supported the impairment of the gut–brain axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

References

Download references

Funding

The research was supported by the UNC Superfund Research program (P42ES031007), University of North Carolina Center for Environmental Health and Susceptibility grant (P30ES010126), and by the UNC Intellectual and Developmental Disabilities Research Center (NICHD; P50 HD103573; PI: Gabriel Dichter).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no actual or potential competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2529 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiao, YC., Johnson, G., Yang, Y. et al. Evaluation of neurological behavior alterations and metabolic changes in mice under chronic glyphosate exposure. Arch Toxicol 98, 277–288 (2024). https://doi.org/10.1007/s00204-023-03622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-023-03622-0

Keywords

Navigation