Skip to main content
Log in

Targeting erythrocyte-mediated hypoxia to alleviate lung injury induced by pyrrolizidine alkaloids

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Pyrrolizidine alkaloids (PAs) are widely distributed natural toxins and have been extensively studied for their hepatotoxicity. However, PA-induced pulmonary toxicity remains less studied regarding the initiating mechanism and treatment approaches. Our previous study demonstrated the formation of pyrrole–hemoglobin adducts after PA exposure in vivo, which is suspected to affect the oxygen-carrying capacity of erythrocytes [red blood cells (RBCs)] consequently. The present study aimed to investigate the effects of PAs on the oxygen-carrying capacity of RBCs and the potential of targeting RBC-mediated hypoxia to alleviate PA-induced lung injury. First, rats were treated with retrorsine (RTS) or monocrotaline (MCT) intravenously at 0.2 mmol/kg. The results of Raman spectrometry analysis on blood samples revealed both RTS and MCT significantly reduced the oxygen-carrying capacity of RBCs. Further, MCT (0.2 mmol/kg) was orally given to the rats with or without pretreatment with two doses of erythropoietin (Epo, 500 IU/kg/dose every other day), an RBC-stimulating agent. Biochemical and histological results showed pretreatment with Epo effectively reduced the cardiopulmonary toxicity induced by MCT. These findings provide the first evidence that adduction on hemoglobin, and the resulting RBC damage and impaired oxygen-carrying capacity, are the major initiating mechanism underlying PA-induced pulmonary arterial hypertension (PAH), while targeting the RBC damage is a potential therapeutic approach for PA-induced lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

Download references

Acknowledgements

The present study was supported by Research Grant Council of Hong Kong (Grant No. 14160817).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Lin.

Ethics declarations

Conflict of interest

All authors declare that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 922 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Lian, W., He, Y. et al. Targeting erythrocyte-mediated hypoxia to alleviate lung injury induced by pyrrolizidine alkaloids. Arch Toxicol 97, 819–829 (2023). https://doi.org/10.1007/s00204-023-03443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-023-03443-1

Keywords

Navigation