Skip to main content
Log in

Organotin and organochlorine toxicants activate key translational regulatory proteins in human immune cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Environmental contaminant exposures occur due to the widespread use of synthetic chemicals. Tributyltin (TBT), dibutyltin (DBT), and pentachlorophenol (PCP) are each used in a variety of applications, including antifouling paints and stabilizers in certain plastics. Each of these compounds has been found in human blood, as well as other tissues, and they have been shown to stimulate pro-inflammatory cytokine production in human immune cells, Inflammatory cytokines mediate response to injury or infection. However, if their levels are increased in the absence of an appropriate stimulus, chronic inflammation can occur. Chronic inflammation is associated with a number of pathologies including cancer. Stimulation of pro-inflammatory cytokine production by these toxicants is dependent on activation of ERK 1/2 and/or p38 MAPK pathways. MAPK pathways have the capacity to regulate translation by increasing phosphorylation of key translation regulatory proteins. There have been no previous studies examining the effects of TBT, DBT, or PCP on translation. The current study shows that ribosomal protein S6 (S6), eukaryotic initiation factor 4B (eIF4B), and eIF4E are phosphorylated (activated) and/or their total levels are elevated in response to each of these compounds at concentrations found in human blood. Activation/increased levels of translational proteins occurred at concentrations of the compounds that have been shown to elevate pro-inflammatory cytokine production, but where there is no increase in mRNA for those proteins was seen. Compound-stimulated increases in translation appear to be part of the mechanism by which they elevate protein production in immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20(3):319–325

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int 34(2):292–308

    Article  CAS  Google Scholar 

  • ATSDR’s Toxicological Profiles (2002) Toxicological Profile for Pentachlorophenol. Atsdr’s Toxicol Profiles. https://doi.org/10.1201/9781420061888_ch130

    Article  Google Scholar 

  • Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM, Manivel JC, Sonenberg N, Yee D, Bitterman PB, Polunovsky VA (2004) Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5(6):553–563. https://doi.org/10.1016/j.ccr.2004.05.024

    Article  CAS  Google Scholar 

  • Brown S, Whalen M (2015) Tributyltin alters secretion of interleukin 1 beta from human immune cells. J Appl Toxicol 35(8):895–908

    Article  CAS  Google Scholar 

  • Brown B, Loganathan B, Owen D (2005) Chlorophenol concentrations in sediment and mussel tissues from selected locations in Kentucky Lake. Chrysal Murray State Univ Undergr Res J 1:5–10

    Google Scholar 

  • Brown S, Boules M, Hamza N, Wang X, Whalen M (2018a) Synthesis of interleukin 1 beta and interleukin 6 in human lymphocytes is stimulated by tributyltin. Arch Toxicol 92(8):2573–2586

    Article  CAS  Google Scholar 

  • Brown S, Wilburn W, Martin T, Whalen M (2018b) Butyltin compounds alter secretion of interleukin 6 from human immune cells. J Appl Toxicol 38(2):201–218

    Article  CAS  Google Scholar 

  • Cirelli DP (1978) Patterns of pentachlorophenol usage in the United States of America—an overview. Pentachlorophenol, pp 13–18

  • Cline RE, Hill RH, Phillips DL, Needham LL (1989) Pentachlorophenol measurements in body fluids of people in log homes and workplaces. Arch Environ Contam Toxicol 18(4):475–481

    Article  CAS  Google Scholar 

  • Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood J Am Soc Hematol 117(14):3720–3732

    CAS  Google Scholar 

  • Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52(7):1799–1805

    Article  CAS  Google Scholar 

  • Epstein RL, Phillippo ET, Harr R, Koscinski W, Vasco G (1991) Organotin residue determination in poultry and turkey sample survey in the United States. J Agric Food Chem 39(5):917–921

    Article  CAS  Google Scholar 

  • Forsyth D, Jay B (1997) Organotin leachates in drinking water from chlorinated poly (vinyl chloride)(CPVC) pipe. Appl Organomet Chem 11(7):551–558

    Article  CAS  Google Scholar 

  • Forsyth D, Weber D, Cleroux C (1992) Determination of butyltin, cyclohexyltin and phenyltin compounds in beers and wines. Food Addit Contam 9(2):161–169

    Article  CAS  Google Scholar 

  • Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8(2):1–6

    Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963. https://doi.org/10.1146/annurev.biochem.68.1.913

    Article  CAS  Google Scholar 

  • Gipperth L (2009) The legal design of the international and European Union ban on tributyltin antifouling paint: Direct and indirect effects. J Environ Manag 90:S86–S95

    Article  CAS  Google Scholar 

  • Godet A-C, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, Prats A-C (2019) IRES trans-acting factors, key actors of the stress response. Int J Mol Sci 20(4):924

    Article  CAS  Google Scholar 

  • Harms U, Andreou AZ, Gubaev A, Klostermeier D (2014) EIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Res 42(12):7911–7922. https://doi.org/10.1093/nar/gku440

    Article  CAS  Google Scholar 

  • Holland EC, Sonenberg N, Pandolfi PP, Thomas G (2004) Signaling control of mRNA translation in cancer pathogenesis. Oncogene 23(18):3138–3144. https://doi.org/10.1038/sj.onc.1207590

    Article  CAS  Google Scholar 

  • Holz MK, Ballif BA, Gygi SP, Blenis J (2005) MTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123(4):569–580. https://doi.org/10.1016/j.cell.2005.10.024

    Article  CAS  Google Scholar 

  • Kannan K, Tanabe S, Tatsukawa R (1995) Occurrence of butyltin residues in certain foodstuffs. Bull Environ Contam Toxicol 55(4):510–516

    Article  CAS  Google Scholar 

  • Kannan K, Senthilkumar K, Giesy JP (1999) Occurrence of butyltin compounds in human blood. Environ Sci Technol 33(10):1776–1779

    Article  CAS  Google Scholar 

  • Kosciuczuk EM, Saleiro D, Platanias LC (2017) Dual targeting of eIF4E by blocking MNK and mTOR pathways in leukemia. Cytokine 89:116–121

    Article  CAS  Google Scholar 

  • Lawrence S, Reid J, Whalen M (2015) Secretion of interferon gamma from human immune cells is altered by exposure to tributyltin and dibutyltin. Environ Toxicol 30(5):559–571. https://doi.org/10.1002/tox.21932

    Article  CAS  Google Scholar 

  • Lawrence S, Ismail F, Jamal SZ, Whalen MM (2018) Tributyltin stimulates synthesis of interferon gamma and tumor necrosis factor alpha in human lymphocytes. J Appl Toxicol JAT 38(8):1081–1090. https://doi.org/10.1002/jat.3617

    Article  CAS  Google Scholar 

  • Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N (2006) MTOR, translation initiation and cancer. Oncogene 25(48):6416–6422. https://doi.org/10.1038/sj.onc.1209888

    Article  CAS  Google Scholar 

  • Martin TJ, Gabure S, Maise J, Snipes S, Peete M, Whalen MM (2019a) The organochlorine pesticides pentachlorophenol and dichlorodiphenyltrichloroethane increase secretion and production of interleukin 6 by human immune cells. Environ Toxicol Pharmacol 72:103263. https://doi.org/10.1016/j.etap.2019.103263

    Article  CAS  Google Scholar 

  • Martin TJ, Maise J, Gabure S, Whalen MM (2019b) Exposures to the environmental contaminants pentachlorophenol and dichlorodiphenyltrichloroethane increase production of the proinflammatory cytokine, interleukin-1β, in human immune cells. J Appl Toxicol 39(8):1132–1142

    Article  CAS  Google Scholar 

  • Meyer TPH, Zehnter I, Hofmann B, Zaisserer J, Burkhart J, Rapp S, Weinauer F, Schmitz J, Illert WE (2005) Filter Buffy Coats (FBC): a source of peripheral blood leukocytes recovered from leukocyte depletion filters. J Immunol Methods 307(1–2):150–166. https://doi.org/10.1016/j.jim.2005.10.004

    Article  CAS  Google Scholar 

  • Morley SJ, Traugh JA (1989) Phorbol esters stimulate phosphorylation of eukaryotic initiation factors 3, 4B, and 4F. J Biol Chem 264(5):2401–2404

    Article  CAS  Google Scholar 

  • Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N (1999) Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J 18(1):270–279. https://doi.org/10.1093/emboj/18.1.270

    Article  CAS  Google Scholar 

  • Roper WL (1992) Toxicological profile for tin. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry

    Google Scholar 

  • Roux PP, Topisirovic I (2012) Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspect Biol 4(11):a012252

    Article  Google Scholar 

  • Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: From protein synthesis to cell size. Trends Biochem Sci 31(6):342–348

    Article  CAS  Google Scholar 

  • Sadiki A-I, Williams DT (1999) A study on organotin levels in Canadian drinking water distributed through PVC pipesa. Chemosphere 38(7):1541–1548

    Article  CAS  Google Scholar 

  • Sadiki A-I, Williams DT, Carrier R, Thomas B (1996) Pilot study on the contamination of drinking water by organotin compounds from PVC materials. Chemosphere 32(12):2389–2398

    Article  CAS  Google Scholar 

  • Showalter S (2005) Restrictions on the use of marine antifouling paints containing tributyltin and copper a white paper prepared by. Quality

  • Sushak L, Gabure S, Maise J, Arnett J, Whalen MM (2020) Dibutyltin alters immune cell production of the pro-inflammatory cytokines interleukin (IL) 1β and IL-6: Role of mitogen-activated protein kinases and changes in mRNA. J Appl Toxicol 40(8):1047–1059

    Article  CAS  Google Scholar 

  • Uhl S, Schmid P, Schlatter C (1986) Pharmacokinetics of pentachlorophenol in man. Arch Toxicol 58(3):182–186

    Article  CAS  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16(8):1909–1920. https://doi.org/10.1093/emboj/16.8.1909

    Article  CAS  Google Scholar 

  • Whalen MM, Loganathan BG, Kannan K (1999) Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro. Environ Res 81(2):108–116

    Article  CAS  Google Scholar 

  • Yamada S, Fujii Y, Mikami E, Kawamura N, Hayakawa J, Aoki K, Fukaya M, Terao C (1993) Small-scale survey of organotin compounds in household commodities. J AOAC Int 76(2):436–441

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by Grant U54CA163066 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Whalen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruff, A., Lewis, M. & Whalen, M. Organotin and organochlorine toxicants activate key translational regulatory proteins in human immune cells. Arch Toxicol 97, 469–493 (2023). https://doi.org/10.1007/s00204-022-03413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-022-03413-z

Keywords

Navigation