Skip to main content
Log in

Dynamically monitoring cellular γ-H2AX reveals the potential of carcinogenicity evaluation for genotoxic compounds

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Amongst all toxicological endpoints, carcinogenicity might pose the greatest concern. Genetic damage has been considered an important underlying mechanism for the carcinogenicity of chemical substances. The demand for in vitro genotoxic tests as alternative approaches is growing rapidly with the implementation of new regulations for compounds. However, currently available in vitro genotoxicity tests are often limited by relatively high false positive rates. Moreover, few studies have explored carcinogenicity potential by in vitro genotoxicity testing due to the shortage of suitable toxicological biomarkers to link gene damage with cancer risk. γ-H2AX is a recently acknowledged attractive endpoint (biomarker) for evaluating DNA damage and can simultaneously reflect the DNA damage response and repair of cells. We previously reported an ultrasensitive and reliable method, namely stable-isotope dilution-liquid chromatography–tandem mass spectrometry (ID-LC–MS/MS), for detecting cellular γ-H2AX and evaluating genotoxic chemicals. More importantly, our method can dynamically monitor the specific processes of genotoxic compounds affecting DNA damage and repair reflected by the amount of γ-H2AX. To clarify the possibility of using this method to assess the potential carcinogenicity of genotoxic chemicals, we applied it to a set of 69 model compounds recommended by the European Center for the Validation of Alternative Methods (ECVAM), with already-characterized genotoxic potential. Compared to conventional in vitro genotoxicity assays, including the Ames test, the γ-H2AX assay by MS has high accuracy (94–96%) due to high sensitivity and specificity (88% and 100%, respectively). The dynamic profiles of model compounds after exposure in HepG2 cells were explored, and a mathematical approach was employed to simulate and quantitatively model the DNA repair kinetics of genotoxic carcinogens (GCs) based on γ-H2AX time–effect curves up to 8 h. Two crucial parameters, i.e., k (rate of γ-H2AX decay) and t50 (time required for γ-H2AX from maximum decrease to half) estimated by the least squares method, were achieved. An open web server to help researchers calculate these two key parameters and profile simulated curves of the tested compound is available online (http://ccb1.bmi.ac.cn:81/shiny-server/sample-apps/prediction1/). We detected a positive association between carcinogenic levels and k and t50 values of γ-H2AX in tested GCs, validating the potential of using this MS-based γ-H2AX in vitro assay to help preliminarily evaluate carcinogenicity and assess genotoxicity. This approach may be used alone or integrated into an existing battery of in vitro genetic toxicity tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2,4-DAT:

2,4-Diaminotoluene

2-AAF:

2-Acetylaminofluorene

4-NQO:

4-Nitroquinoline-N-oxide

5-Fu:

5-Fluorouracil

AFB1:

Aflatoxin B1

ANOVA:

Analysis of variance

Arac:

Cytosine arabinoside

AZT:

Azidothymidine

BaP:

Benzo[a]pyrene

CA:

Chromosome aberration

CdCl2 :

Cadmium chloride

Cispt:

Cisplatin

CPA:

Cyclophosphamide

DMBA:

Dimethylbenzanthracene

DMEM:

Dulbecco’s modified Eagle’s medium

DMNA:

Dimethylnitrosamine

DSB:

DNA double-strand break

ECVAM:

European Center for the Validation of Alternative Methods

ENU:

N-Ethyl-N-nitrosourea

ESI:

Electrospray ionization

ETOP:

Etoposide

FBS:

Foetal bovine serum

GCs:

Genotoxic carcinogens

HepG2:

Human hepatoblastoma cells

IARC:

International Agency for Research on Cancer

ICH:

International Council for Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use

ID-LC–MS/MS:

Isotope dilution-liquid chromatography–tandem mass spectrometry

IQ:

2-Amino-3-methylimidazo(4,5-f)quinolone

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

k :

Rate of γ-H2AX decay

LSD:

Least significant difference

MEC:

Minimum effective concentration

MECs:

Minimum effective concentrations

MLA:

Mouse lymphoma assay

MMC:

Mitomycin C

MMS:

Methyl methanesulfonate

MN:

Micronucleus

MOA:

Mode of action

MRM:

Multiple reaction monitoring

NDCs:

Non-DNA damaging chemicals

OECD:

Organization for Economic Co-operation and Development

p-Chl:

p-Chloroaniline

PHHs:

Primary human hepatocytes

PhIP:

2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine

RCC:

Relative cell counts

SD:

Standard deviation

t 50 :

Time required for γ-H2AX from maximum decrease to half

t max :

Time to peak

VICH:

International Cooperation on Harmonization of Technical Requirements for Registration of Veterinary Medicinal Products

γ-H2AX:

Phosphorylated histone H2AX

References

  • Aardema MJ, Albertini S, Arni P, Henderson LM, Kirsch-Volders M, Mackay JM, Sarrif AM, Stringer DA, Taalman RDF (1998) Aneuploidy: a report of an ECETOC task force. Mutat Res 410(1):3–79

    Article  PubMed  CAS  Google Scholar 

  • Audebert M, Riu A, Jacques C, Hillenweck A, Jamin EL, Zalko D, Cravedi JP (2010) Use of the γ-H2AX assay for assessing the genotoxicity of polycyclic aromatic hydrocarbons in human cell lines. Toxicol Lett 199(2):182–192

    Article  PubMed  CAS  Google Scholar 

  • Birrell L, Cahill P, Hughes C, Tate M, Walmsley RM (2010) GADD45a-GFP GreenScreen HC assay results for the ECVAM recommended lists of genotoxic and non-genotoxic chemicals for assessment of new genotoxicity tests. Mutat Res 695(1–2):87–95

    Article  PubMed  CAS  Google Scholar 

  • Butterworth BE (1990) Consideration of both genotoxic and nongenotoxic mechanisms in predicting carcinogenic potential. Mutat Res 239(2):117–132

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31(15):1869–1883

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Seo JE, Li X, Mei N (2019) Genetic toxicity assessment using liver cell models: past, present, and future. J Toxicol Environ Health B Crit Rev 23(1):1–24

    CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  • Hendriks G, Derr RS, Misovic B, Morolli B, Calleja FM, Vrieling H (2016) The extended ToxTracker assay discriminates between induction of DNA damage, oxidative stress, and protein misfolding. Toxicol Sci 150(1):190–203

    Article  PubMed  CAS  Google Scholar 

  • Hewitt NJ, Hewitt P (2004) Phase I and II enzyme characterization of two sources of HepG2 cell lines. Xenobiotica 34(3):243–256

    Article  PubMed  CAS  Google Scholar 

  • Hughes C, Rabinowitz A, Tate M, Birrell L, Allsup J, Billinton N, Walmsley RM (2012) Development of a high-throughput gaussian luciferase reporter assay for the activation of the GADD45a gene by mutagens, promutagens, clastogens, and aneugens. J Biomol Screen 17(10):1302–1315

    Article  PubMed  CAS  Google Scholar 

  • Ibuki Y, Toyooka T (2015) Evaluation of compound phototoxicity, focusing on phosphorylated histone H2AX. J Radiat Res 56(2):220–228

    Article  PubMed  CAS  Google Scholar 

  • ICH (2011) Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use S2(R1). ICH Expert Working Group. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S2_R1/Step4 /S2R1_Step4.pdf. Accessed 12 Nov 2018

  • Jiang XJ, Chen CZ, Zhao W, Zhang ZZ (2013) Sodium arsenite and arsenic trioxide differently affect the oxidative stress, genotoxicity and apoptosis in A549 cells: an implication for the paradoxical mechanism. Environ Toxicol Pharmacol 36(3):891–902

    Article  PubMed  CAS  Google Scholar 

  • Jurica K, Karačonji IB, Benković V, Kopjar N (2017) In vitro assessment of the cytotoxic, DNA damaging, and cytogenetic effects of hydroquinone in human peripheral blood lymphocytes. Arh Hig Rada Toksikol 68(4):322–335

    Article  PubMed  CAS  Google Scholar 

  • Khoury L, Zalko D, Audebert M (2013) Validation of high-throughput genotoxicity assay screening using γ-H2AX in-cell western assay on HepG2 Cells. Environ Mol Mutagen 54(9):737–746

    Article  PubMed  CAS  Google Scholar 

  • Kirkland D, Aardema M, Henderson L, Muller L (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 584(1–2):1–256

    PubMed  CAS  Google Scholar 

  • Kirkland D, Kasper P, Martus H-J (2016) Updated recommended lists of genotoxic and non-genotoxic compounds for assessment of the performance of new or improved genotoxicity tests. Mutat Res 795(1):7–30

    Article  CAS  Google Scholar 

  • Kopp B, Dario M, Zalko D, Audebert M (2018) Assessment of a panel of cellular biomarkers and the kinetics of their induction in comparing genotoxic modes of action in HepG2 Cells. Environ Mol Mutagen 59(6):516–528

    Article  PubMed  CAS  Google Scholar 

  • Kopp B, Khoury L, Audebert M (2019) Validation of the γH2AX biomarker for genotoxicity assessment: a review. Arch Toxicol 93(8):2103–2114

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Wang Q, Shuryak I, Brenner DJ, Turner HC (2019) Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol 14(1):150

    Article  PubMed  PubMed Central  Google Scholar 

  • Luch A (2005) Nature and nurture—lessons from chemical carcinogenesis. Nat Rev Cancer 5(2):113–125

    Article  PubMed  CAS  Google Scholar 

  • MacGregor JT, Frotschl R, White PA, Crump KS, Eastmond DA, Fukushima S, Guerard M, Hayashi M, Soeteman-Hernandez LG, Johnson GE, Kasamatsu T, Levy DD, Morita T, Müller L, Schoeny R, Schuler MJ, Thybaud V (2015) IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk. Mutat Res 783(5):66–78

    Article  CAS  Google Scholar 

  • Matsuzaki K, Harada A, Takeiri A, Tanaka K, Mishima M (2010) Whole cell-ELISA to measure the gammaH2AX response of six aneugens and eight DNA-damaging compounds. Mutat Res 700(1–2):71–79

    Article  PubMed  CAS  Google Scholar 

  • Motoyama S, Takeiri A, Tanaka K, Harada A, Matsuzaki K, Taketo J, Matsuo S, Fujii E, Mishima M (2018) Advantages of evaluating γ-H2AX induction in non-clinical drug development. Genes Environ 40:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mumbrekar KD, Goutham HV, Vadhiraja BM, Bola Sadashiva SR (2016) Polymorphisms in double strand break repair related genes influence radiosensitivity phenotype in lymphocytes from healthy individuals. DNA Repair (amst) 40(4):27–34

    Article  CAS  Google Scholar 

  • Nagel ZD, Engelward BP, Brenner DJ, Begley TJ, Sobol RW, Bielas JH, Stambrook PJ, Wei Q, Hu JJ, Terry MB, Dilworth C, McAllister KA, Reinlib L, Worth L, Shaughnessy DT (2017) Towards precision prevention: technologies for identifying healthy individuals with high risk of disease. Mutat Res 800–802(8):14–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nohmi T (2018) Thresholds of genotoxic and non-genotoxic carcinogens. Toxicol Res 34(4):281–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • OECD (2015) Guidance document on revisions to OECD genetic toxicology test guidelines. OECD Workgroup of National Coordinators for Test 42 guidelines (WNT). https://www.oecd.org/chemicalsafety/testing/Genetic%20Toxicology%20Guidance%20Document%20Aug%2031%202015.pdf. Accessed 12 Nov 2018

  • Qu MM, Xu H, Chen J, Zhang YJ, Xu B, Guo L, Xie JW (2020) Distinct orchestration and dynamic processes on γ-H2AX and p-H3 for two major types of genotoxic chemicals revealed by mass spectrometry analysis. Chem Res Toxicol 33(8):2108–2119

    Article  PubMed  CAS  Google Scholar 

  • Rocejanasaroj A, Tencomnao T, Sangkitikomol W (2014) Thunbergia laurifolia extract minimizes the adverse effects of toxicants by regulating P-glycoprotein activity, CYP450, and lipid metabolism gene expression in HepG2 cells. Genet Mol Res 13(1):205–219

    Article  PubMed  CAS  Google Scholar 

  • Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S (2015) DNA damage foci: meaning and significance. Environ Mol Mutagen 56(6):491–504

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Flores M, Pasaro E, Bonassi S, Laffon B, Valdiglesias V (2015) γH2AX assay as DNA damage biomarker for human population studies: defining experimental conditions. Toxicol Sci 144(2):406–413

    Article  PubMed  CAS  Google Scholar 

  • Sharma PM, Ponnaiya B, Taveras M, Shuryak I, Turner H, Brenner DJ (2015) High throughput measurement of gammaH2AX DSB repair kinetics in a healthy human population. PLoS ONE 10(3):e0121083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skipper A, Sims JN, Yedjou CG, Tchounwou PB (2016) Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress. Int J Environ Res Public Health 13(1):88

    Article  PubMed Central  CAS  Google Scholar 

  • Smart DJ, Ahmedi KP, Harvey JS, Lynch AM (2011) Genotoxicity screening via the γH2AX by flow assay. Mutat Res 715(1–2):25–31

    Article  PubMed  CAS  Google Scholar 

  • Stöber R (2018) Highlight report: false positives in genotoxicity testing. Arch Toxicol 92(7):2405

    Article  PubMed  CAS  Google Scholar 

  • Takeiri A, Matsuzaki K, Motoyama S, Yano M, Harada A, Katoh C, Tanaka K, Mishima M (2019) High-content imaging analyses of gamma-H2AX-foci and micronuclei in TK6 cells elucidated genotoxicity of chemicals and their clastogenic/aneugenic mode of action. Genes Environ 41:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkez H, Arslan ME, Ozdemir O (2017) Genotoxicity testing: progress and prospects for the next decade. Expert Opin Drug Metab Toxicol 13(10):1089–1098

    Article  PubMed  CAS  Google Scholar 

  • VICH (2013) VICH topic GL23(R): studies to evaluate the safety of residues of veterinary drugs in human food: Genotoxicity testing. https://www.ema.europa.eu/documents/scientific-guideline/international-cooperation-harmonisation-technical-requirements-registration-veterinary -medic inal_en-2.pdf. Accessed 12 Nov 2018

  • Westerink WM, Stevenson JC, Horbach GJ, Schoonen WG (2010) The development of RAD51C, Cystatin A, p53 and Nrf2 luciferase reporter assays in metabolically competent HepG2 cells for the assessment of mechanism-based genotoxicity and of oxidative stress in the early research phase of drug development. Mutat Res 696(1):21–40

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Powers S, Zhu W, Hannun YA (2016a) Substantial contribution of extrinsic risk factors to cancer development. Nature 529(7584):43–47

    Article  PubMed  CAS  Google Scholar 

  • Wu YF, Chitranshi P, Loukotková L, Costa GGD, Beland FA, Zhang J, Fang JL (2016b) Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in hepatic cells. Arch Toxicol 91(6):1–19

    CAS  Google Scholar 

  • Yamada HY, Gorbsky GJ (2006) Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther 5(12):2963–2969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeilinger K, Freyer N, Damm G, Seehofer D, Knospel F (2016) Cell sources for in vitro human liver cell culture models. Exp Biol Med (maywood) 241(15):1684–1698

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program (2018YFC1602600) and the National Natural Science Foundation of China (No. 21974151).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Xu or Jianwei Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 822 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, M., Xu, H., Li, W. et al. Dynamically monitoring cellular γ-H2AX reveals the potential of carcinogenicity evaluation for genotoxic compounds. Arch Toxicol 95, 3559–3573 (2021). https://doi.org/10.1007/s00204-021-03156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-021-03156-3

Keywords

Navigation