Skip to main content
Log in

Nrf2 deficiency aggravates the kidney injury induced by subacute cadmium exposure in mice

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a heavy metal pollutant that adversely effects the kidney. Oxidative stress and inflammation are likely major mechanisms of Cd-induced kidney injury. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is crucial in regulating antioxidant and inflammatory responses. To investigate the role of Nrf2 in the development of subacute Cd-induced renal injury, we utilized Nrf2 knockout (Nrf2-KO) and control mice (Nrf2-WT) which were given cadmium chloride (CdCl2, 1 or 2 mg/kg i.p.) once daily for 7 days. While subacute CdCl2 exposure induced kidney injury in a dose-dependent manner, after the higher Cd dosage exposure, Nrf2-KO mice showed elevated blood urea nitrogen (BUN) and urinary neutrophil gelatinase-associated lipocalin (NGAL) levels compared to control. In line with the findings, the renal tubule injury caused by 2 mg Cd/kg, but not lower dosage, in Nrf2-KO mice determined by Periodic acid–Schiff staining was more serious than that in control mice. Further mechanistic studies showed that Nrf2-KO mice had more apoptotic cells and severe oxidative stress and inflammation in the renal tubules in response to Cd exposures. Although there were no significant differences in Cd contents of tissues between Cd-exposed Nrf2-WT and Nrf2-KO mice, the mRNA expression of Nrf2 downstream genes, including heme oxygenase 1 and metallothionein 1, were significantly less induced by Cd exposures in the kidney of Nrf2-KO compared with Nrf2-WT mice. In conclusion, Nrf2-deficient mice are more sensitive to kidney injury induced by subacute Cd exposure due to a muted antioxidant response, as well as a likely diminished production of specific Cd detoxification metallothioneins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AREs:

Antioxidant response elements

BUN:

Blood urea nitrogen

Cd:

Cadmium

CdCl2 :

Cadmium chloride

Cd–MTs:

Cd–metallothioneins

Cd68:

Cluster of differentiation 68

GSH:

Glutathione

Gclc:

Glutamate cysteine ligase catalytic subunit

Gclm:

Glutamate cysteine ligase modifier subunit

4-HNE:

4-Hydroxynonenal

Ho1:

Heme oxygenase 1

ICP-MS:

Inductively coupled plasma mass spectrometry

IL-6:

Interleukin-6

IHC:

Immunohistochemistry

KEAP1:

Kelch-like ECH-associated protein-1

MT:

Metallothionein

Nrf2:

Nuclear factor erythroid-derived 2-like 2

MRE:

Metal response elements

Nrf2-KO:

Nrf2 Knockout

Nrf2-WT:

Nrf2 Wild-type

NaCl:

Sodium chloride

NGAL:

Neutrophil gelatinase-associated lipocalin

Nqo1:

Nicotinamide adenine dinucleotide (phosphate):quinine oxidoreductase 1

PAS:

Periodic acid–Schiff

ROS:

Reactive oxygen species

SCR:

Serum creatinine

TNF:

Tumor necrosis factor

TUNEL:

TdT-mediated dUTP nick-end labeling

References

  • Abouhamed M et al (2007) Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 293(3):F705–F712

    Article  CAS  Google Scholar 

  • Akiyama M et al (2019) Environmental electrophile-mediated toxicity in mice lacking Nrf2, CSE, or both. Environ Health Perspect 127(6):67002

    Article  Google Scholar 

  • Ashrafizadeh M et al (2019) Back to nucleus: combating with cadmium toxicity using Nrf2 signaling pathway as a promising therapeutic target. Biol Trace Elem Res 197(1):52–62

    Article  Google Scholar 

  • Boudreau J et al (1988) Toxicity of inhaled cadmium chloride: early responses of the antioxidant and surfactant systems in rat lungs. J Toxicol Environ Health 23(2):241–256

    Article  CAS  Google Scholar 

  • Chen J, Shaikh ZA (2009) Activation of Nrf2 by cadmium and its role in protection against cadmium-induced apoptosis in rat kidney cells. Toxicol Appl Pharmacol 241(1):81–89

    Article  CAS  Google Scholar 

  • Csala M et al (2015) On the role of 4-hydroxynonenal in health and disease. Biochim Biophys Acta 1852(5):826–838

    Article  CAS  Google Scholar 

  • Das S et al (2019) Carnosic acid attenuates cadmium induced nephrotoxicity by inhibiting oxidative stress, promoting Nrf2/HO-1 signalling and impairing TGF-beta1/Smad/Collagen IV signalling. Molecules 24(22):4176

    Article  CAS  Google Scholar 

  • Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238(3):289–293

    Article  CAS  Google Scholar 

  • Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, Rudisill C (2012) Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry (US), Atlanta (GA). PMID: 24049863

  • Fu J et al (2015) Protective role of nuclear factor E2-related factor 2 against acute oxidative stress-induced pancreatic beta -cell damage. Oxid Med Cell Longev 2015:639191

    Article  Google Scholar 

  • Fujie T et al (2016) Transcriptional induction of metallothionein by tris(pentafluorophenyl)stibane in cultured bovine aortic endothelial cells. Int J Mol Sci 17(9):1381

    Article  Google Scholar 

  • Ghoochani M et al (2019) Association among sources exposure of cadmium in the adult non-smoking general population of Tehran. Biol Trace Elem Res 191(1):27–33

    Article  CAS  Google Scholar 

  • Gu J et al (2017) Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy. Diabetes 66(2):529–542

    Article  CAS  Google Scholar 

  • Itoh K et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    Article  CAS  Google Scholar 

  • Jarup L (2002) Cadmium overload and toxicity. Nephrol Dial Transplant 17(Suppl 2):35–39

    Article  CAS  Google Scholar 

  • Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208

    Article  Google Scholar 

  • Kong W et al (2018) Nrf2 deficiency promotes the progression from acute tubular damage to chronic renal fibrosis following unilateral ureteral obstruction. Nephrol Dial Transplant 33(5):771–783

    Article  CAS  Google Scholar 

  • Kuang W et al (2017) Ligustrazine modulates renal cysteine biosynthesis in rats exposed to cadmium. Environ Toxicol Pharmacol 54:125–132

    Article  CAS  Google Scholar 

  • Menke A et al (2009) Cadmium levels in urine and mortality among U.S. adults. Environ Health Perspect 117(2):190–196

    Article  CAS  Google Scholar 

  • Ohtsuji M et al (2008) Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J Biol Chem 283(48):33554–33562

    Article  CAS  Google Scholar 

  • Satarug S, Vesey DA, Gobe GC (2017) Kidney cadmium toxicity, diabetes and high blood pressure: the perfect storm. Tohoku J Exp Med 241(1):65–87

    Article  CAS  Google Scholar 

  • Shi P, Jing H, Xi S (2019) Urinary metal/metalloid levels in relation to hypertension among occupationally exposed workers. Chemosphere 234:640–647

    Article  CAS  Google Scholar 

  • Shinkai Y et al (2016) Partial contribution of the Keap1-Nrf2 system to cadmium-mediated metallothionein expression in vascular endothelial cells. Toxicol Appl Pharmacol 295:37–46

    Article  CAS  Google Scholar 

  • Sun J et al (2018) NRF2 mitigates acute alcohol-induced hepatic and pancreatic injury in mice. Food Chem Toxicol 121:495–503

    Article  CAS  Google Scholar 

  • Suzuki T, Yamamoto M (2015) Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med 88(Pt B):93–100

    Article  CAS  Google Scholar 

  • Tachibana H et al (2014) Metallothionein deficiency exacerbates diabetic nephropathy in streptozotocin-induced diabetic mice. Am J Physiol Renal Physiol 306(1):F105–F115

    Article  CAS  Google Scholar 

  • Wang Y et al (2018) Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol Appl Pharmacol 353:23–30

    Article  CAS  Google Scholar 

  • Wu KC, Liu JJ, Klaassen CD (2012) Nrf2 activation prevents cadmium-induced acute liver injury. Toxicol Appl Pharmacol 263(1):14–20

    Article  CAS  Google Scholar 

  • Yamamoto M, Kensler TW, Motohashi H (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98(3):1169–1203

    Article  CAS  Google Scholar 

  • Zhang Q et al (2010) A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol 244(1):84–97

    Article  CAS  Google Scholar 

  • Zhang Q et al (2020) Ameliorative effects of resveratrol against cadmium-induced nephrotoxicity via modulating nuclear xenobiotic receptor response and PINK1/Parkin-mediated mitophagy. Food Funct 11(2):1856–1868

    Article  Google Scholar 

  • Zhou S et al (2017) Intermittent hypoxia-induced cardiomyopathy and its prevention by Nrf2 and metallothionein. Free Radic Biol Med 112:224–239

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China 82020108027 (J.P.), 81830099 (J.P.), 81573106 (J.P.), 81770698 (H.Z) and 81402635 (J.F.), Liaoning Key Research and Development Guidance Plan 2019JH8/10300012 (J.P.), Liaoning Province Natural Science Foundation (20180530011, J.F.), Educational Department of Liaoning Province Scientific Research Foundation (ZF2019035, J.F.), China Medical University Training Program for National Natural Science Fund for Excellent Young Scholars (YQ20170001, J.F.), and the Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic. We thank Dr. Michael P. Waalkes for editorial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingqi Fu or Jingbo Pi.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 710 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Han, X., Wang, G. et al. Nrf2 deficiency aggravates the kidney injury induced by subacute cadmium exposure in mice. Arch Toxicol 95, 883–893 (2021). https://doi.org/10.1007/s00204-020-02964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02964-3

Keywords

Navigation