Skip to main content

Advertisement

Log in

Upregulation of let-7f-2-3p by long noncoding RNA NEAT1 inhibits XPO1-mediated HAX-1 nuclear export in both in vitro and in vivo rodent models of doxorubicin-induced cardiotoxicity

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Clinical application of doxorubicin (Dox) is limited due to its undesirable side effects, especially cardiotoxicity. Several microRNAs (miRNAs) such as microRNA-140-5p and miR-23a aggravate Dox-induced cardiotoxicity. Here we demonstrate that upregulation of miRNA let-7f-2-3p by long noncoding RNA (lncRNA) NEAT1 inhibits exportin-1 (XPO1)-mediated nuclear export of hematopoietic-substrate-1 associated protein X-1 (HAX-1) in Dox-induced cardiotoxicity. Treatment of the H9c2 cells with the Dox (1 μM) for 6 h inhibited HAX-1 nuclear export and decreased XPO1 expression. Overexpression of XPO1 significantly attenuated the Dox-induced leakage of myocardial enzymes (creatine phosphokinase, creatine kinase-MB and lactate dehydrogenase) and cardiomyocyte apoptosis with the increased HAX-1 nuclear export. Differentially expressed miRNAs including let-7f-2-3p were selected from the Dox or vehicle-treated cardiomyocytes. TargetScan and luciferase assay showed that let-7f-2-3p targeted XPO1 3′ UTR. Inhibition of let-7f-2-3p reduced Dox-induced cardiotoxicity and apoptosis by inhibiting XPO1-mediated HAX-1 nuclear export, whereas let-7f-2-3p overexpression aggravated these effects. In addition, lncRNA NEAT1 was identified as an endogenous sponge RNA to repress let-7f-2-3p expression. Overexpression of lncRNA NEAT1 abolished the increased let-7f-2-3p expression by Dox, and thereby attenuated cardiotoxicity. The loss function of let-7f-2-3p increased XPO1-mediated HAX-1 nuclear export and reduced myocardial injury in Dox (20 mg/kg)-treated rats. Importantly, let-7f-2-3p inhibition in mice alleviated Dox-induced cardiotoxicity and preserved the antitumor efficacy. Together, let-7f-2-3p regulated by lncRNA NEAT1 aggravates Dox-induced cardiotoxicity through inhibiting XPO1-mediated HAX-1 nuclear export, and may serve as a potential therapeutic target against Dox-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CK-MB:

Creatine kinase-myocardial bound

CPK:

Creatine phosphokinase

Dox:

Doxorubicin

GEO:

Gene Expression Omnibus

HAX-1:

Hematopoietic-substrate-1 associated protein X-1

LDH:

Lactate dehydrogenase

miRNA:

microRNA

XPO1:

Exportin 1

References

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China [Grant Nos. 81970331 and 81370337 (to Xiaoyang Zhou) and 81872443 (to Jing Yang)], and Medical Science Advancement Program (Basic Medical Science) of Wuhan University, Grant No. TFJC 2018003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Duan, C., Liu, W. et al. Upregulation of let-7f-2-3p by long noncoding RNA NEAT1 inhibits XPO1-mediated HAX-1 nuclear export in both in vitro and in vivo rodent models of doxorubicin-induced cardiotoxicity. Arch Toxicol 93, 3261–3276 (2019). https://doi.org/10.1007/s00204-019-02586-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02586-4

Keywords

Navigation