Skip to main content

Advertisement

Log in

Involvement of Nrf2/HO-1 antioxidant signaling and NF-κB inflammatory response in the potential protective effects of vincamine against methotrexate-induced nephrotoxicity in rats: cross talk between nephrotoxicity and neurotoxicity

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Methotrexate (MTX) is a cytotoxic chemotherapeutic agent widely used in the treatment of cancer and autoimmune diseases like rheumatoid arthritis. However, its use has been limited by its nephrotoxicity. MTX-induced renal injury results in uremia which may influence both the peripheral and central nervous systems causing cognitive and memory problems. The nephroprotective and neuroprotective activities of vincamine (10, 20 and 40 mg/kg), a natural alkaloid with known anti-oxidant, anti-apoptotic and neuroprotective properties, were investigated against MTX-induced toxicity. MTX treatment increased the markers of kidney injury and relative kidney weight, lipid peroxidation, nuclear factor-κB (NF-κB), inflammatory markers, tumor necrosis factor-α, interleukin-1β, myeloperoxidase and cyclooxygenase-2 and caspase-3 expressions, decreased catalase and superoxide dismutase activities, interleukin-10 and ATP levels and antioxidant proteins, nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1). Moreover, it disturbed rats’ behavior in the locomotor activity test, Y-maze and passive avoidance task. Treatment with vincamine (40 mg/kg) effectively ameliorated MTX-induced renal injury via increasing the expression of Nrf2 and HO-1 suppressing oxidative stress, decreasing the expression of inflammatory markers, NF-κB and caspase-3 pathways and enhancing ATP levels. Additionally, it restored locomotor activity in the locomotor test and memory functions in passive avoidance and Y-maze tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd El-Twab SM, Hozayen WG, Hussein OE, Mahmoud AM (2016) 18 β-glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. Ren Fail 38:1516–1527

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Maged AE, Gad AM, Abdel-Aziz AK, Aboulwafa MM, Azab SS (2018) Comparative study of anti-VEGF ranibizumab and interleukin-6 receptor antagonist tocilizumab in adjuvant-induced arthritis. Toxicol Appl Pharmacol 356:65–75

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Raheem IT, Khedr NF (2014) Renoprotective effects of montelukast, a cysteinyl leukotriene receptor antagonist, against methotrexate-induced kidney damage in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 387:341–353

    Article  CAS  Google Scholar 

  • Abdel-Salam OM, Hamdy SM, Seadawy SAM, Galal AF, Abouelfadl DM, Atrees SS (2015) Effect of piracetam, vincamine, vinpocetine, and donepezil on oxidative stress and neurodegeneration induced by aluminum chloride in rats. Comp Clin Pathol 25:1–14

    Google Scholar 

  • Abdel-Salam OM, Hamdy SM, Seadawy SAM, Galal AF, Abouelfadl DM, Atrees SS (2016) Effect of piracetam, vincamine, vinpocetine, and donepezil on oxidative stress and neurodegeneration induced by aluminum chloride in rats. Comp Clin Pathol 25:305–318

    Article  CAS  Google Scholar 

  • Ackland SP, Schilsky RL (1987) High-dose methotrexate: a critical reappraisal. J Clin Oncol 5:2017–2031

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Al Maruf A, O’Brien PJ, Naserzadeh P, Fathian R, Salimi A, Pourahmad J (2018) Methotrexate induced mitochondrial injury and cytochrome c release in rat liver hepatocytes. Drug Chem Toxicol 41:51–61

    Article  CAS  PubMed  Google Scholar 

  • Alarcon GS, Tracy IC, Strand GM, Singh K, Macaluso M (1995) Survival and drug discontinuation analyses in a large cohort of methotrexate treated rheumatoid arthritis patients. Ann Rheum Dis 54:708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali AE, Mahdy HM, Elsherbiny DM, Azab SS (2018) Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: impact on oxidative, inflammatory and apoptotic machineries. Biochem Pharmacol 156:431–443. https://doi.org/10.1016/j.bcp.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  • Asci H, Ozmen O, Ellidag HY, Aydin B, Bas E, Yilmaz N (2017) The impact of gallic acid on the methotrexate-induced kidney damage in rats. J Food Drug Anal 25:890–897

    Article  CAS  PubMed  Google Scholar 

  • Asvadi I, Hajipour B, Asvadi A, Asl N, Roshangar L, Khodadadi A (2011) Protective effect of pentoxyfilline in renal toxicity after methotrexate administration. Eur Rev Med Pharmacol Sci 15:1003–1009

    CAS  PubMed  Google Scholar 

  • Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  CAS  PubMed  Google Scholar 

  • Banchroft J, Stevens A, Turner D (1996) Theory and practice of histological technique, 4th edn. Churchill Livingstone, New York

    Google Scholar 

  • Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Investig Dermatol 78:206–209

    Article  CAS  PubMed  Google Scholar 

  • Bugnicourt J-M, Godefroy O, Chillon J-M, Choukroun G, Massy ZA (2013) Cognitive disorders and dementia in CKD: the neglected kidney–brain axis. J Am Soc Nephrol 24:353–363

    Article  CAS  PubMed  Google Scholar 

  • Burn D, Bates D (1998) Neurology and the kidney. J Neurol Neurosurg Psychiatry 65:810–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabak DO, Kocaman N (2015) Effects of silymarin on methotrexate-induced nephrotoxicity in rats. Ren Fail 37:734–739

    Article  CAS  PubMed  Google Scholar 

  • Deguchi T, Kusuhara H, Takadate A, Endou H, Otagiri M, Sugiyama Y (2004) Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int 65:162–174

    Article  CAS  PubMed  Google Scholar 

  • El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A, Azab SS (2018) Astaxanthin ameliorates doxorubicin-induced cognitive impairment (chemobrain) in experimental rat model: impact on oxidative, inflammatory, and apoptotic machineries. Mol Neurobiol 55:5727–5740. https://doi.org/10.1007/s12035-017-0797-7

    Article  CAS  PubMed  Google Scholar 

  • El-Dessouki AM, El Fattah MA, Awad AS, Zaki HF (2018) Zafirlukast and vincamine ameliorate tamoxifen-induced oxidative stress and inflammation: Role of the JNK/ERK pathway. Life Sci 202:78–88

    Article  CAS  PubMed  Google Scholar 

  • El-Sheikh AA, Morsy MA, Abdalla AM, Hamouda AH, Alhaider IA (2015) Mechanisms of thymoquinone hepatorenal protection in methotrexate-induced toxicity in rats. Mediators Inflamm 2015(4):1–12

    Article  CAS  Google Scholar 

  • Fandy TE, Abdallah I, Khayat M, Colby DA, Hassan HE (2016) In vitro characterization of transport and metabolism of the alkaloids: vincamine, vinpocetine and eburnamonine. Cancer Chemother Pharmacol 77:259–267

    Article  CAS  PubMed  Google Scholar 

  • Fawcett J, Scott J (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayed A-HA (2010) Brain trace element concentration of rats treated with the plant alkaloid, vincamine. Biol Trace Elem Res 136:314–319

    Article  CAS  PubMed  Google Scholar 

  • Frei E et al (1980) High dose methotrexate with leucovorin rescue: rationale and spectrum of antitumor activity. Am J Med 68:370–376

    Article  PubMed  Google Scholar 

  • Gallagher SR (2007) One‐dimensional SDS gel electrophoresis of proteins. Curr Protoc Toxicol 32:A.3F.1–A.3F.38

    Google Scholar 

  • Ghafouri S, Fathollahi Y, Javan M, Shojaei A, Asgari A, Mirnajafi-Zadeh J (2016) Effect of low frequency stimulation on impaired spontaneous alternation behavior of kindled rats in Y-maze test. Epilepsy Res 126:37–44

    Article  PubMed  Google Scholar 

  • Hafez HM, Ibrahim MA, Ibrahim SA, Amin EF, Goma W, Abdelrahman AM (2015) Potential protective effect of etanercept and aminoguanidine in methotrexate-induced hepatotoxicity and nephrotoxicity in rats. Eur J Pharmacol 768:1–12

    Article  CAS  PubMed  Google Scholar 

  • Han J, Qu Q, Qiao J, Zhang J (2017) Vincamine alleviates amyloid-β 25–35 peptides-induced cytotoxicity in PC12 cells. Pharmacogn Mag 13:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry R, Cannon D, Winkelman J (1974) Principles and techniques. Clinical Chemistry, 2nd edn. Harper and Row, New York, p 525

    Google Scholar 

  • Karamohamed S, Guidotti G (2001) Bioluminometric method for real-time detection of ATPase activity. Biotechniques 31:420–425

    Article  CAS  PubMed  Google Scholar 

  • Kelly KJ (2006) Acute renal failure: much more than a kidney disease. Semin Nephrol 26(2):105–113

    Article  CAS  PubMed  Google Scholar 

  • Krishnan AV, Kiernan MC (2009) Neurological complications of chronic kidney disease. Nat Rev Neurol 5:542

    Article  CAS  PubMed  Google Scholar 

  • Lisowska-Myjak B (2014) Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract 128:303–311

    Article  CAS  PubMed  Google Scholar 

  • Liu M et al (2008) Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol 19:1360–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Lopez E et al (2013) Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet Genom 23:53–61

    Article  CAS  Google Scholar 

  • March CJ et al (1985) Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315:641

    Article  CAS  PubMed  Google Scholar 

  • Morsy MA, Ibrahim SA, Amin EF, Kamel MY, Rifaai RA, Hassan MK (2013) Curcumin ameliorates methotrexate-induced nephrotoxicity in rats. Adv Pharmacol Sci 2013:1–7

    Article  CAS  Google Scholar 

  • Muhammad N, Steele R, Isbell TS, Philips N, Ray RB (2017) Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget 8:66226

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S et al (2013) Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-κB pathways. J Nutr Biochem 24:2040–2050

    Article  CAS  PubMed  Google Scholar 

  • Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V (2015) Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol 10:2039–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Öktem F, Yilmaz HR, Ozguner F, Olgar S, Ayata A, Uzar E, Uz E (2006) Methotrexate-induced renal oxidative stress in rats: the role of a novel antioxidant caffeic acid phenethyl ester. Toxicol Ind Health 22:241–247

    Article  PubMed  Google Scholar 

  • Onopiuk A, Tokarzewicz A, Gorodkiewicz E (2015) Cystatin C: a kidney function biomarker. Adv Clin Chem 68:57–69

    Article  CAS  PubMed  Google Scholar 

  • Otunctemur A et al (2014) Protective effect of hydrogen sulfide on gentamicin-induced renal injury. Ren Fail 36:925–931

    Article  PubMed  Google Scholar 

  • Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Yamaguchi H, Kogawa T, Abe T, Mano N (2014) Organic anion transporting polypeptides 1B1 and 1B3 play an important role in uremic toxin handling and drug-uremic toxin interactions in the liver. J Pharm Pharm Sci 17:475–484

    Article  PubMed  Google Scholar 

  • Shishodia S (2013) Molecular mechanisms of curcumin action: gene expression. Biofactors 39:37–55

    Article  CAS  PubMed  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanWert AL, Sweet DH (2008) Impaired clearance of methotrexate in organic anion transporter 3 (Slc22a8) knockout mice: a gender specific impact of reduced folates. Pharm Res 25:453–462

    Article  CAS  PubMed  Google Scholar 

  • Vardi N, Parlakpinar H, Ates B, Cetin A, Otlu A (2013) The protective effects of Prunus armeniaca L (apricot) against methotrexate-induced oxidative damage and apoptosis in rat kidney. J Physiol Biochem 69:371–381

    Article  CAS  PubMed  Google Scholar 

  • Vassault A et al (1986) Protocole de validation de techniques. Ann Biol Clin 44:45

    Google Scholar 

  • Walker T, Rhodes P, Westmoreland C (2000) The differential cytotoxicity of methotrexate in rat hepatocyte monolayer and spheroid cultures. Toxicol In Vitro 14:475–485

    Article  CAS  PubMed  Google Scholar 

  • Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11:694–703

    Article  CAS  PubMed  Google Scholar 

  • Woods JR, Riofski MV, Zheng MM, O’Banion MA, Mo H, Kirshner J, Colby DA. Bioorganic (2013) Synthesis of 15-methylene-eburnamonine from (+)-vincamine, evaluation of anticancer activity, and investigation of mechanism of action by quantitative NMR. Bioorg Med Chem Lett 23:5865–5869

    Article  CAS  PubMed  Google Scholar 

  • Yuksel Y, Yuksel R, Yagmurca M, Haltas H, Erdamar H, Toktas M, Ozcan O (2016) Effects of quercetin on methotrexate-induced nephrotoxicity in rats. Human Exp Toxicol 36:51–61

    Article  CAS  Google Scholar 

  • Zaki HF, Abdelsalam RM (2013) Vinpocetine protects liver against ischemia–reperfusion injury. Can J Physiol Pharmacol 91:1064–1070

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read the journal’s authorship statement and agree to it.

Corresponding author

Correspondence to Samar S. Azab.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, Y.M., Menze, E.T., Azab, S.S. et al. Involvement of Nrf2/HO-1 antioxidant signaling and NF-κB inflammatory response in the potential protective effects of vincamine against methotrexate-induced nephrotoxicity in rats: cross talk between nephrotoxicity and neurotoxicity. Arch Toxicol 93, 1417–1431 (2019). https://doi.org/10.1007/s00204-019-02429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02429-2

Keywords

Navigation