Skip to main content

Advertisement

Log in

Dysregulation of autophagy in rat liver with mitochondrial DNA depletion induced by the nucleoside analogue zidovudine

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The nucleoside reverse transcriptase inhibitor zidovudine (AZT), used in HIV infection treatment, induces mitochondrial DNA (mtDNA) depletion. A cause–effect relationship between mtDNA status alterations and autophagy has been reported. Both events are common in several liver diseases, including hepatocellular carcinoma. Here, we have studied autophagy activation in rat liver with mtDNA depletion induced by AZT administration in drinking water for 35 days. AZT at a concentration of 1 mg/ml, but not 0.5 mg/ml in the drinking water, decreased mtDNA levels in rat liver and extrahepatic tissues. In liver, mtDNA-encoded cytochrome c oxidase 1 protein levels were decreased. Although serum biomarkers of liver and kidney toxicity remained unaltered, β-hydroxybutyrate levels were increased in liver of AZT-treated rats. Moreover, autophagy was dysregulated at two levels: (i) decreased induction signalling of this process as indicated by increases in autophagy inhibitors activity (AKT/mTOR), and absence of changes (Beclin-1, Atg5, Atg7) or decreases (AMPK/ULK1) in the expression/activity of pro-autophagy proteins; and (ii) reduced autophagosome degradation as indicated by decreases in the lysosome abundance (LAMP2 marker) and the transcription factor TFEB controlling lysosome biogenesis. This resulted in increased autophagosome abundance (LC3-II marker) and accumulation of the protein selectively degraded by autophagy p62, and the transcription factor Nrf2 in liver of AZT-treated rats. Nrf2 was activated as indicated by the up-regulation of antioxidant target genes Nqo1 and Hmox-1. In conclusion, rat liver with AZT-induced mtDNA depletion presented dysregulations in autophagosome formation and degradation balance, which results in accumulation of these structures in parenchymal liver cells, favouring hepatocarcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adebiyi OO, Adebiyi OA, Owira PM (2015) Naringin reverses hepatocyte apoptosis and oxidative stress associated with HIV-1 nucleotide reverse transcriptase inhibitors-induced metabolic complications. Nutrients 7(12):10352–10368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alers S, Löffler AS, Wesselborg S et al (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: crosstalk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnaudo E, Dalakas M, Shanske S et al (1991) Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 337(8740):508–510

    Article  PubMed  CAS  Google Scholar 

  • Baixauli F, Acín-Pérez R, Villarroya-Beltrí C et al (2015) Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab 22(3):485–498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barile M, Valenti D, Quagliariello E et al (1998) Mitochondria as cell targets of AZT (zidovudine). Gen Pharmacol 31(4):531–538

    Article  PubMed  CAS  Google Scholar 

  • Blazquez AG, Briz O, Gonzalez-Sanchez E et al (2014) The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis. Toxicol Appl Pharmacol 277(1):77–85

    Article  PubMed  CAS  Google Scholar 

  • Brinkman K, Smeitink JA, Romijn JA et al (1999) Mitochondrial toxicity induced by nucleoside analogue reverse transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral therapy related lipodystrophy. Lancet 354(9184):1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Chariot P, Drogou I, de Lacroix-Szmania I et al (1999) Zidovudine-induced mitochondrial disorder with massive liver steatosis, myopathy, lactic acidosis, and mitochondrial DNA depletion. J Hepatol 30(1):156–160

    Article  PubMed  CAS  Google Scholar 

  • Corcuera T, Alonso MJ, Picazo A et al (1996) Hepatic Morphological alterations induced by zidovudine (ZDV) in an experimental model. Pathol Res Pract 192(2):182–187

    Article  PubMed  CAS  Google Scholar 

  • Dash S, Chava S, Chandra PK et al (2016) Autophagy in hepatocellular carcinomas: from pathophysiology to therapeutic response. Hepat Med 8:9–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13(3):137–145

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Mosquera L, Diogo CV, Yambire KF et al (2017) Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis. Sci Rep 7:45076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaou I, Malliti M, Guimont MC et al (2001) Effect of stavudine on mitochondrial genome and fatty acid oxidation in lean and obese mice. J Pharmacol Exp Ther 297(2):516–523

    PubMed  CAS  Google Scholar 

  • Gonzalez-Sanchez E, Marin JJ, Perez MJ (2014) The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol Pharm 11(6):1856–1868

    Article  PubMed  CAS  Google Scholar 

  • Hsu CC, Lee HC, Wei YH (2013) Mitochondrial DNA alterations and mitochondrial dysfunction in the progression of hepatocellular carcinoma. World J Gastroenterol 19(47):8880–8886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu Y, Suarez J, Fricovsky E et al (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 284(1):547–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurley JH, Schulman BA (2014) Atomistic autophagy: the structures of cellular self-digestion. Cell 157(2):300–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inami Y, Waguri S, Sakamoto A et al (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193(2):275–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis W, Gonzalez B, Chomyn A et al (1992) Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. J Clin Invest 89(4):1354–1360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis W, Simpson JF, Meyer RR (1994) Cardiac mitochondrial DNA polymerase-gamma is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ Res 74(2):344–348

    Article  PubMed  CAS  Google Scholar 

  • Li-Harms X, Milasta S, Lynch J et al (2015) Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice. Blood 125(1):162–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindqvist LM, Heinlein M, Huang DC et al (2014) Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci USA 111(23):8512–8517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu L, Liao JZ, He XX et al (2017) The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget 8(34):57707–57722

    PubMed  PubMed Central  Google Scholar 

  • Macias RI, Hierro C, de Juan SC et al (2011) Hepatic expression of sodium-dependent vitamin C transporters: ontogeny, subtissular distribution and effect of chronic liver diseases. Br J Nutr 106(12):1814–1825

    Article  PubMed  CAS  Google Scholar 

  • Marin JJ, Hernandez A, Revuelta IE et al (2013) Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins. Free Radic Biol Med 61:218–228

    Article  PubMed  CAS  Google Scholar 

  • Marin JJG, Lozano E, Perez MJ (2016) Lack of mitochondrial DNA impairs chemical hypoxia-induced autophagy in liver tumour cells through ROS-AMPK-ULK1 signaling dysregulation independently of HIF-1α. Free Radic Biol Med 101:71–84

    Article  PubMed  CAS  Google Scholar 

  • Marquez RT, Xu L (2012) Bcl-2: beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2(2):214–221

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mutter FE, Park BK, Copple IM (2015) Value of monitoring Nrf2 activity for the detection of chemical and oxidative stress. Biochem Soc Trans 43(4):657–662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pelicano H, Xu RH, Du M et al (2006) Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol 175(6):913–923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez MJ, Macías RI, Duran C et al (2005) Oxidative stress and apoptosis in fetal rat liver induced by maternal cholestasis. Protective effect of ursodeoxycholic acid. J Hepatol 43(2):324–332

    Article  PubMed  CAS  Google Scholar 

  • Powles T, Robinson D, Stebbing J et al (2009) Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol 27(6):884–890

    Article  PubMed  Google Scholar 

  • Raghu R, Karthikeyan S (2016) Zidovudine and isoniazid induced liver toxicity and oxidative stress: evaluation of mitigating properties of silibinin. Environ Toxicol Pharmacol 46:217–226

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan R, Sivanesan K (2017) Evaluation of ameliorative ability of Silibinin against zidovudine and isoniazid-induced hepatotoxicity and hyperlipidaemia in rats: role of silibinin in phase I and II drug metabolism. Chem Biol Interact 273:142–153

    Article  PubMed  CAS  Google Scholar 

  • Rambold AS, Lippincott-Schwartz J (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10(23):4032–4038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruderman NB, Xu XJ, Nelson L et al (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298(4):E751-E760

    Article  PubMed Central  CAS  Google Scholar 

  • Rusten TE, Stenmark H (2010) p62, an autophagy hero or culprit? Nat Cell Biol 12(3):207–209

    Article  PubMed  CAS  Google Scholar 

  • Scruggs ER, Dirks AJ (2008) Mechanisms of zidovudine-induced mitochondrial toxicity and mytophagy. Pharmacology 82(2):83–88

    Article  PubMed  CAS  Google Scholar 

  • Sridharan S, Jain K, Basu A (2011) Regulation of autophagy by kinases. Cancers 3(2):2630–2654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stankov MV, Panayotova-Dimitrova D, Leverkus M et al (2012) Autophagy inhibition due to thymidine analogues as novel mechanism leading to hepatocyte dysfunction and lipid accumulation. AIDS 26(16):1995–2006

    Article  PubMed  CAS  Google Scholar 

  • Takamura A, Komatsu M, Hara T et al (2011) Autophagy-deficient mice develop multiple liver tumours. Genes Dev 25(8):795–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka J, Ozawa K, Tobe T (1979) Significance of blood ketone body ratio as an indicator of hepatic cellular energy status in jaundiced rabbits. Gastroenterology 76(4):691–696

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Guhde G, Suter A et al (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406(6798):902–906

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Kuo CF, Sir D et al (2015) Autophagy inhibits oxidative stress and tumour suppressors to exert its dual effect on hepatocarcinogenesis. Cell Death Differ 22(6):1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Umemura A, He F, Taniguchi K et al (2016) p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29(6):935–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venhoff N, Lebrecht D, Pfeifer D et al (2012) Muscle-fiber transdifferentiation in an experimental model of respiratory chain myopathy. Arthritis Res Ther 14(5):R233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voss M, Künzel U, Higel F et al (2014) Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J 33(24):2890–2905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103(2):514–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Song F, Gao Z et al (2014) Long-term exposure of mice to nucleoside analogues disrupts mitochondrial DNA maintenance in cortical neurons. PLoS One 9(1):e85637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Spanish “Instituto de Salud Carlos III” (Grant FIS PI15/00179 and PI16/00598) co-financed by European Regional Development Fund (ERDF), the Ministry of Science and Innovation, Spain (SAF2013-40620-R and SAF2016-75197-R), the “Junta de Castilla y León”, Spain (SA015U13 and SA063P17), the “Fundacion Mutua Madrileña”, Spain (Call 2015) and the “Fundación Memoria de D. Samuel Solórzano Barruso”, Spain (FS/8-2017). The group is member of the Network for Cooperative Research on Membrane Transport Proteins (REIT) and CIBERehd. The authors thank Emma Keck for editing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Perez.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Llamas, A., Monte, M.J., Marin, J.J.G. et al. Dysregulation of autophagy in rat liver with mitochondrial DNA depletion induced by the nucleoside analogue zidovudine. Arch Toxicol 92, 2109–2118 (2018). https://doi.org/10.1007/s00204-018-2200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2200-5

Keywords

Navigation