Skip to main content

Advertisement

Log in

Understanding renal nuclear protein accumulation: an in vitro approach to explain an in vivo phenomenon

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Proper subcellular trafficking is essential to prevent protein mislocalization and aggregation. Transport of the peroxisomal enzyme d-amino acid oxidase (DAAO) appears dysregulated by specific pharmaceuticals, e.g., the anti-overactive bladder drug propiverine or a norepinephrine/serotonin reuptake inhibitor (NSRI), resulting in massive cytosolic and nuclear accumulations in rat kidney. To assess the underlying molecular mechanism of the latter, we aimed to characterize the nature of peroxisomal and cyto-nuclear shuttling of human and rat DAAO overexpressed in three cell lines using confocal microscopy. Indeed, interference with peroxisomal transport via deletion of the PTS1 signal or PEX5 knockdown resulted in induced nuclear DAAO localization. Having demonstrated the absence of active nuclear import and employing variably sized mCherry- and/or EYFP-fusion proteins of DAAO and catalase, we showed that peroxisomal proteins ≤134 kDa can passively diffuse into mammalian cell nuclei—thereby contradicting the often-cited 40 kDa diffusion limit. Moreover, their inherent nuclear presence and nuclear accumulation subsequent to proteasome inhibition or abrogated peroxisomal transport suggests that nuclear localization is a characteristic in the lifecycle of peroxisomal proteins. Based on this molecular trafficking analysis, we suggest that pharmaceuticals like propiverine or an NSRI may interfere with peroxisomal protein targeting and import, consequently resulting in massive nuclear protein accumulation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

h/rCAT:

Human/rat catalase

h/rDAAO:

Human/rat d-amino acid oxidase

NES:

Nuclear export signal

NLS:

Nuclear localization signal

NTS:

Nuclear translocation signal

PTS:

Peroxisomal targeting signal

RNI:

Relative nuclear intensity

References

  • Ast J, Stiebler AC, Freitag J, Bolker M (2013) Dual targeting of peroxisomal proteins. Front Physiol 4:297

    Article  PubMed  PubMed Central  Google Scholar 

  • Baudhuin P, Müller M, Poole B, de Duve C (1965) Non-mitochondrial oxidizing particles (microbodies) in rat liver and kidney and in Tetrahymena pyriformis. Biochem Biophys Res Commun 20:53–59

    Article  CAS  PubMed  Google Scholar 

  • Baum M, Erdel F, Wachsmuth M, Rippe K (2014) Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells. Nat Commun 5:4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogerd HP, Fridell RA, Benson RE, Hua J, Cullen BR (1996) Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol Cell Biol 16:4207–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldinelli L, Molla G, Sacchi S, Pilone MS, Pollegioni L (2009) Relevance of weak flavin binding in human d-amino acid oxidase. Protein Sci 18:801–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappelletti P, Campomenosi P, Pollegioni L, Sacchi S (2014) The degradation (by distinct pathways) of human d-amino acid oxidase and its interacting partner pLG72–two key proteins in d-serine catabolism in the brain. FEBS J 281:708–723

    Article  CAS  PubMed  Google Scholar 

  • Chuderland D, Konson A, Seger R (2008) Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell 31:850–861

    Article  CAS  PubMed  Google Scholar 

  • Ciesla J, Fraczyk T, Rode W (2011) Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol 58:137–148

    CAS  PubMed  Google Scholar 

  • Dietrich DR, Heussner AH, O’Brien E, Gramatté T, Runkel M, Rumpf S, Day BW (2008) Propiverine-induced accumulation of nuclear and cytosolic protein in F344 rat kidneys: isolation and identification of the accumulating protein. Toxicol Appl Pharmacol 233:411–419

    Article  CAS  PubMed  Google Scholar 

  • Edelheit O, Hanukoglu A, Hanukoglu I (2009) Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol 9:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Elgersma Y, Vos A, van den Berg M, van Roermund CW, van der Sluijs P, Distel B, Tabak HF (1996) Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J Biol Chem 271:26375–26382

    Article  CAS  PubMed  Google Scholar 

  • Frattini LF, Piubelli L, Sacchi S, Molla G, Pollegioni L (2011) Is rat an appropriate animal model to study the involvement of d-serine catabolism in schizophrenia? insights from characterization of d-amino acid oxidase. FEBS J 278:4362–4373

    Article  CAS  PubMed  Google Scholar 

  • Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60:1659–1688

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata R, Bebok Z, Sorscher EJ, Sztul ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146:1239–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould SJ, Keller GA, Subramani S (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol 107:897–905

    Article  CAS  PubMed  Google Scholar 

  • Halvey PJ, Hansen JM, Johnson JM, Go YM, Samali A, Jones DP (2007) Selective oxidative stress in cell nuclei by nuclear-targeted d-amino acid oxidase. Antioxid Redox Signal 9:807–816

    Article  CAS  PubMed  Google Scholar 

  • Henn A, Kirner S, Leist M (2011) TLR2 hypersensitivity of astrocytes as functional consequence of previous inflammatory episodes. J Immunol 186:3237–3247

    Article  CAS  PubMed  Google Scholar 

  • Hung MC, Link W (2011) Protein localization in disease and therapy. J Cell Sci 124:3381–3392

    Article  CAS  PubMed  Google Scholar 

  • Kalderon D, Richardson WD, Markham AF, Smith AE (1984a) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311:33–38

    Article  CAS  PubMed  Google Scholar 

  • Kalderon D, Roberts BL, Richardson WD, Smith AE (1984b) A short amino acid sequence able to specify nuclear location. Cell 39:499–509

    Article  CAS  PubMed  Google Scholar 

  • Keminer O, Peters R (1999) Permeability of single nuclear pores. Biophys J 77:217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Görlich D (2015) A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife. doi:10.7554/eLife.11466

    PubMed  PubMed Central  Google Scholar 

  • Knockenhauer Kevin E, Schwartz Thomas U (2016) The nuclear pore complex as a flexible and dynamic gate. Cell 164:1162–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodney G, Dumin E, Safory H, Rosenberg D, Mori H, Radzishevsky I, Wolosker H (2015) Nuclear compartmentalization of serine racemase regulates d-Serine production: implications for N-methyl-D-aspartate (NMDA) receptor activation. J Biol Chem 290:31037–31050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latonen L (2011) Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress. Proteasome inhibitors induce nuclear ribonucleoprotein inclusions that accumulate several key factors of neurodegenerative diseases and cancer. BioEssays 33:386–395

    Article  CAS  PubMed  Google Scholar 

  • Latonen L, Moore HM, Bai B, Jaamaa S, Laiho M (2011) Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene 30:790–805

    Article  CAS  PubMed  Google Scholar 

  • Lazarow PB, de Duve C (1973) The synthesis and turnover of rat liver peroxisomes: IV. Biochemical pathway of catalase synthesis. J Cell Biol 59:491–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luks L, Sacchi S, Pollegioni L, Dietrich DR (2017) Novel insights into renal d-amino acid oxidase accumulation: propiverine changes DAAO localization and peroxisomal size in vivo. Arch Toxicol 91:427–437

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Goryaynov A, Sarma A, Yang W (2012) Self-regulated viscous channel in the nuclear pore complex. Proc Natl Acad Sci 109:7326–7331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell J, Paul P, Chen H-J, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S, Winkler S, Tisato V, Hajitou A, Smith B, Vance C, Shaw C, Mazarakis ND, de Belleroche J (2010) Familial amyotrophic lateral sclerosis is associated with a mutation in d-amino acid oxidase. Proc Natl Acad Sci 107(16):7556–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Polegioni L (2006) Characterization of human d-amino acid oxidase. FEBS Lett 580:2358–2364

    Article  CAS  PubMed  Google Scholar 

  • Nakano S, Kuwata M, Hasegawa H, Irimura K, Maruden A, Morita K (1989) Thirteen-week oral toxicity study of propiverine hydrochloride in rats. J Toxicol Sci 14(Suppl 2):13–59

    Article  CAS  PubMed  Google Scholar 

  • Paine PL, Feldherr CM (1972) Nucleocytoplasmic exchange of macromolecules. Exp Cell Res 74:81–98

    Article  CAS  PubMed  Google Scholar 

  • Park S-H, Kukushkin Y, Gupta R, Chen T, Konagai A, Hipp MS, Hayer-Hartl M, Hartl FU (2013) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154:134–145

    Article  CAS  PubMed  Google Scholar 

  • Purdue PE, Lazarow PB (1996) Targeting of human catalase to peroxisomes is dependent upon a novel COOH–terminal peroxisomal targeting sequence. J Cell Biol 134:849–862

    Article  CAS  PubMed  Google Scholar 

  • Radi ZA, Stewart ZS, Grzemski FA, Bobrowski WF (2013) Renal pathophysiologic role of cortical tubular inclusion bodies. Toxicol Pathol 41:32–37

    Article  PubMed  Google Scholar 

  • Romano D, Molla G, Pollegioni L, Marinelli F (2009) Optimization of human d-amino acid oxidase expression in Escherichia coli. Protein Expr Purif 68:72–78

    Article  CAS  PubMed  Google Scholar 

  • Sacchi S, Bernasconi M, Martineau M, Mothet J-P, Ruzzene M, Pilone MS, Pollegioni L, Molla G (2008) pLG72 modulates intracellular d-Serine levels through its interaction with d-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 283:22244–22256

    Article  CAS  PubMed  Google Scholar 

  • Sacchi S, Cappelletti P, Giovannardi S, Pollegioni L (2011) Evidence for the interaction of d-amino acid oxidase with pLG72 in a glial cell line. Mol Cell Neurosci 48:20–28

    Article  CAS  PubMed  Google Scholar 

  • Seibel NM, Eljouni J, Nalaskowski MM, Hampe W (2007) Nuclear localization of enhanced green fluorescent protein homomultimers. Anal Biochem 368:95–99

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Aitchison JD (2013) Peroxisomes take shape. Nat Rev Mol Cell Biol 14:803–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ, Russel D, Wente SR, Sali A, Rout MP (2016) Simple rules for passive diffusion through the nuclear pore complex. J Cell Biol 215(1):57–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trelease RN, Xie W, Lee MS, Mullen RT (1996) Rat liver catalase is sorted to peroxisomes by its C-terminal tripeptide Ala-Asn-Leu, not by the internal Ser-Lys-Leu motif. Eur J Cell Biol 71:248–258

    CAS  PubMed  Google Scholar 

  • Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11:777–788

    Article  CAS  PubMed  Google Scholar 

  • Vainshtein BK, Melik-Adamyan WR, Barynin VV, Vagin AA, Grebenko AI (1981) Three-dimensional structure of the enzyme catalase. Nature 293:411–412

    Article  CAS  PubMed  Google Scholar 

  • Verrall L, Walker M, Rawlings N, Benzel I, Kew JNC, Harrison PJ, Burnet PWJ (2007) d-amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26:1657–1669

    Article  PubMed  PubMed Central  Google Scholar 

  • Verrall L, Burnet PW, Betts JF, Harrison PJ (2010) The neurobiology of d-amino acid oxidase and its involvement in schizophrenia. Mol Psychiatry 15:122–137

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Brattain MG (2007) The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. FEBS Lett 581:3164–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita K, Kuwata M, Irimura K, Morinaga N, Kurokawa K, Ashizawa M (1990) Fifty-two-weeks oral chronic toxicity study of propiverine hydrochloride in rats. J Toxicol Sci 15:107–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Konstanz and the Konstanz Research School Chemical Biology (KoRS-CB), the Deutsche Forschungsgemeinschaft (RTG 1331), and the Fondo di Ateneo per la Ricerca. We thank the Bioimaging Center (University of Konstanz) for the use of the imaging equipment. We acknowledge Prof. Dr. Frank Thevenod (University of Witten/Herdecke, Germany) for providing WKPT cells. Special thanks to Johannes Delp and Prof. Dr. Marcel Leist for providing instrumentation and support with Cellomics. We thank Dr. Sascha Beneke and Philipp Secker for helpful discussions and our students Nadja Schlichenmaier, Madeline Walz, and Céline Weller for assistance with cloning.

Author information

Authors and Affiliations

Authors

Contributions

L. Luks and M. Y. Maier planned the project, designed the experiments, performed all experiments except for the U87 data, analyzed, interpreted and visualized all data, wrote the original draft, and reviewed the manuscript. D. R. Dietrich provided resources, planned the project, and was involved in writing, reviewing, and editing the manuscript. S. Sacchi and L. Pollegioni provided resources and materials, performed the experiments with U87 cells, and were involved in editing the manuscript.

Corresponding author

Correspondence to Daniel R. Dietrich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2017_1970_MOESM1_ESM.tif

Supplementary material S1 Inhibition of peroxisomal import promotes nuclear localization of DAAO in WKPT cells. Confocal microscopy of transiently transfected WKPT expressing EYFP-tagged a rDAAO, b rDAAO-ΔPTS. Nuclei are labeled with Hoechst33342 and are indicated by dashed lines. Pearson’s correlation coefficient (r) and line plot profile were determined for colocalization analysis. c Representative far-UV (upper figure) and near-UV (lower figure) circular dichroism (CD) spectra of recombinant His-rDAAO and His-rDAAO-ΔPTS. d Enzymatic activity of His-rDAAO and His-rDAAO-ΔPTS1 determined using oxygen consumption. Mean ± SEM, n = 3. Unpaired t test, n.s. = not significant. e Confocal analysis of HEK293 cells expressing EYFP-DAAO 24 h after knockdown of PEX5. rDAAO = EYFP-tagged rat DAAO. PMP70 = peroxisomal membrane protein 70. PTS = peroxisomal targeting signal. PEX5 = peroxisomal biogenesis factor 5. Scale bar 10 μm (TIFF 32713 kb)

204_2017_1970_MOESM2_ESM.tif

Supplementary material S2 Cross-talk between different targeting signals. a Schematic representation of EYFP-DAAO constructs with N-terminal EYFP-tag, C-terminal PTS1 (SHL), and the classical monopartite NLS (PKKKRKVE) at different positions within the DAAO protein sequence. b Confocal microscopy of transiently transfected HEK293 cells expressing different DAAO constructs as listed in a. Nuclei are labeled with Hoechst33342. Same results observed for WKPT cells (data not shown). NLS nuclear localization signal. PTS peroxisomal targeting signal. Scale bar 10 μm (TIFF 18,132 kb)

204_2017_1970_MOESM3_ESM.tif

Supplementary material S3 DAAO size-dependently enters the nucleus via passive diffusion in WKPT cells but is not actively exported. a Native PAGE and Western blot of EYFP constructs. b Quantification of relative nuclear intensity (RNI) of EYFP signal (intensitynucleus/intensitycell) in WKPT cells. Mean ± SEM, n = 5. One-way ANOVA + Tukey’s post-test, different colored bars indicate significant difference at p < 0.05. C) Confocal microscopy of transiently transfected WKPT cells expressing EYFP constructs. Nuclei are indicated by dashed lines. For letter code see b. h/rDAAO = EYFP-tagged human/rat DAAO. h/rCAT = EYFP-tagged human/rat catalase. NLS nuclear localization signal, PTS peroxisomal targeting signal, mCh mCherry-tag. Scale bar 10 μm (TIFF 26,528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luks, L., Maier, M.Y., Sacchi, S. et al. Understanding renal nuclear protein accumulation: an in vitro approach to explain an in vivo phenomenon. Arch Toxicol 91, 3599–3611 (2017). https://doi.org/10.1007/s00204-017-1970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-1970-5

Keywords

Navigation