Skip to main content

Advertisement

Log in

Knockout of arsenic (+3 oxidation state) methyltransferase is associated with adverse metabolic phenotype in mice: the role of sex and arsenic exposure

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Susceptibility to toxic effects of inorganic arsenic (iAs) depends, in part, on efficiency of iAs methylation by arsenic (+3 oxidation state) methyltransferase (AS3MT). As3mt-knockout (KO) mice that cannot efficiently methylate iAs represent an ideal model to study the association between iAs metabolism and adverse effects of iAs exposure, including effects on metabolic phenotype. The present study compared measures of glucose metabolism, insulin resistance and obesity in male and female wild-type (WT) and As3mt-KO mice during a 24-week exposure to iAs in drinking water (0.1 or 1 mg As/L) and in control WT and As3mt-KO mice drinking deionized water. Results show that effects of iAs exposure on fasting blood glucose (FBG) and glucose tolerance in either WT or KO mice were relatively minor and varied during the exposure. The major effects were associated with As3mt KO. Both male and female control KO mice had higher body mass with higher percentage of fat than their respective WT controls. However, only male KO mice were insulin resistant as indicated by high FBG, and high plasma insulin at fasting state and 15 min after glucose challenge. Exposure to iAs increased fat mass and insulin resistance in both male and female KO mice, but had no significant effects on body composition or insulin resistance in WT mice. These data suggest that As3mt KO is associated with an adverse metabolic phenotype that is characterized by obesity and insulin resistance, and that the extent of the impairment depends on sex and exposure to iAs, including exposure to iAs from mouse diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abhyankar LN, Jones MR, Guallar E, Navas-Acien A (2012) Arsenic exposure and hypertension: a systematic review. Environ Health Perspect 120:494–500

    Article  CAS  PubMed  Google Scholar 

  • Ahsan H, Chen Y, Kibriya MG, Slavkovich V, Parvez F, Jasmine F, Gamble MV, Graziano JH (2007) Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol Biomarkers Prev 16:1270–1278

    Article  CAS  PubMed  Google Scholar 

  • Antonelli R, Shao K, Thomas DJ, Sams R II, Cowden J (2014) AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility. Environ Res 132:156–167

    Article  CAS  PubMed  Google Scholar 

  • Arnold LL, Suzuki S, Yokohira M, Kakiuchi-Kiyota S, Pennington KL, Cohen SM (2014) Time course of urothelial changes in rats and mice orally administered arsenite. Toxicol Pathol 42:855–862

    Article  PubMed  Google Scholar 

  • Chan DC, Barrett PH, Watts GF (2004) Lipoprotein transport in the metabolic syndrome: pathophysiological and interventional studies employing stable isotopy and modelling methods. Clin Sci (Lond) 107:233–249

    Article  CAS  Google Scholar 

  • Chen YC, Guo YL, Su HJ, Hsueh YM, Smith TJ, Ryan LM, Lee MS, Chao SC, Lee JY, Christiani DC (2003) Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med 45:241–248

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Graziano JH, Ahsan H (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 239:184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Arnold LL, Cohen SM, Thomas DJ, Le XC (2011) Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water. Toxicol Sci 124:320–326

    Article  CAS  PubMed  Google Scholar 

  • Chen JW, Wang SL, Wang YH, Sun CW, Huang YL, Chen CJ et al (2012) Arsenic methylation, GSTO1 polymorphisms, and metabolic syndrome in an arseniasis endemic area of southwestern Taiwan. Chemosphere 88:432–438

    Article  CAS  PubMed  Google Scholar 

  • Cole LK, Vance JE, Vance DE (2012) Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1821:754–761

    Article  CAS  Google Scholar 

  • Currier JM, Svoboda M, Matoušek T, Dĕdina J, Stýblo M (2011) Direct analysis and stability of methylated trivalent arsenic metabolites in cells and tissues. Metallomics 3:1347–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Razo LM, García-Vargas GG, Valenzuela OL, Hernandez-Castellanos E, Sánchez-Peña LC, Drobná Z, Loomis D, Stýblo M (2011) Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera Regions in Mexico. Environ Health 10:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Villaseñor A, Sánchez-Soto MC, Cebrián ME, Os-trosky-Wegman P, Hiriart M (2006) Sodium arsenite impairs insulin secretion and transcription in pancreatic β-cells. Toxicol Appl Pharmacol 214:30–34

    Article  PubMed  Google Scholar 

  • Dodmane PR, Arnold LL, Pennington KL, Thomas DJ, Cohen SM (2013) Effect of dietary treatment with dimethylarsinous acid (DMA(III)) on the urinary bladder epithelium of arsenic (+3 oxidation state) methyltransferase (As3mt) knockout and C57BL/6 wild type female mice. Toxicology 305:130–135

    Article  CAS  PubMed  Google Scholar 

  • Dodmane PR, Arnold LL, Muirhead DE, Suzuki S, Yokohira M, Pennington KL, Dave BJ, Lu X, Le XC, Cohen SM (2014) Characterization of intracellular inclusions in the urothelium of mice exposed to inorganic arsenic. Toxicol Sci 137:36–46

    Article  CAS  PubMed  Google Scholar 

  • Douillet C, Currier JM, Saunders J, Bodnar W, Matoušek T, Stýblo M (2013) Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicol Appl Pharmacol 267:11–15

    Article  CAS  PubMed  Google Scholar 

  • Drobná Z, Naranmandura H, Kubachka KM, Edwards BC, Herbin-Davis K, Styblo M, Le XC, Creed JT, Maeda N, Hughes MF et al (2009) Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem Res Toxicol 22:1713–1720

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrannini E (1998) Insulin resistance versus insulin deficiency in non-insulindependent diabetes mellitus: problems and prospects. Endocr Rev 19:477–490

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Woods CG, Yehuda-Shnaidman E, Zhang Q, Wong V, Collins S, Sun G, Andersen ME, Pi J (2010) Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect 118:864–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Zavala A, Matoušek T, Drobná Z, Adair BM, Dĕdina J, Thomas DJ, Stýblo M (2008) Speciation of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer). J Anal At Spectrom 23:342–351

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YK, Pu YS, Chung CJ, Shiue HS, Yang MH, Chen CJ, Hsueh YM (2008) Plasma folate level, urinary arsenic methylation profiles, and urothelial carcinoma susceptibility. Food Chem Toxicol 46:929–938

    Article  CAS  PubMed  Google Scholar 

  • Huang MC, Douillet C, Su M, Zhou K, Wu T, Chen W, Galanko JA, Drobná Z, Saunders RJ, Martin E, Fry RC, Jia W, Stýblo M (2016a) Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: effect of sex and arsenic exposure. Arch Toxicol. doi:10.1007/s00204-016-1676-0

    PubMed Central  Google Scholar 

  • Huang MC, Douillet CC, Stýblo M (2016b) Knockout of arsenic (+3 oxidation state) methyltransferase results in sex-dependent changes in phosphatidylcholine metabolism in mice. Arch Toxicol. doi:10.1007/s00204-016-1844-2

    PubMed Central  Google Scholar 

  • Hughes MF, Edwards BC, Herbin-Davis KM, Saunders J, Styblo M, Thomas DJ (2010) Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice. Toxicol Appl Pharmacol 249:217–223

    Article  CAS  PubMed  Google Scholar 

  • IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (2004) Volume 84, some drinking-water disinfectants and contaminants, including arsenic. WHO-International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Kim NH, Mason CC, Nelson RG, Afton SE, Essader AS, Medlin JE, Levine KE, Hoppin JA, Lin C, Knowler WC, Sandler DP (2013) Arsenic exposure and incidence of type 2 diabetes in Southwestern American Indians. Am J Epidemiol 177:962–969

    Article  PubMed  PubMed Central  Google Scholar 

  • Kligerman AD, Malik SI, Campbell JA (2010) Cytogenetic insights into DNA damage and repair of lesions induced by a monomethylated trivalent arsenical. Mutat Res 695:2–8

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li B, Xi S, Zheng Q, Wang D, Sun G (2013) Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. Environ Health 12:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ (2001) A novel S-adenosyl-l-methionine:arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem 277:10795–10803

    Article  Google Scholar 

  • Matoušek T, Hernández-Zavala A, Svoboda M, Langerová L, Adair BM, Drobná Z, Thomas DJ, Stýblo M, Dĕdina J (2008) Oxidation state specific generation of arsines from methylated arsenicals based on l-cysteine treatment in buffered media for speciation analysis by hydride generation—automated cryotrapping—gas chromatography-atomic absorption spectrometry with the multiatomizer. Spetrochim Acta Part B 63:396–406

    Article  Google Scholar 

  • Maull EA, Ahsan H, Cooper G, Edwards J, Longnecker M, Navas-Acien A, Pi J, Silbergeld E, Styblo M, Tseng C-H, Thayer K, Loomis D (2012) Evaluation of the association be-tween arsenic and diabetes: a National Toxicology Program workshop review. Environ Health Perspect 120:1658–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M (2016) Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104–111

    PubMed  Google Scholar 

  • Moon K, Guallar E, Navas-Acien A (2012) Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep 14:542–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nizam S, Kato M, Yatsuya H, Khalequzzaman M, Ohnuma S, Naito H, Nakajima T (2013) Differences in urinary arsenic metabolites between diabetic and non-diabetic subjects in Bangladesh. Int J Environ Res Public Health 10:1006–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul DS, Harmon AW, Devesa V, Thomas DJ, Stýblo M (2007a) Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. Environ Health Perspect 115:734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul DS, Hernández-Zavala A, Walton FS, Adair BM, Dĕdina J, Matoušek T, Styblo M (2007b) Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: development of a mouse model for arsenic-induced diabetes. Toxicol Appl Pharmacol 222:305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul DS, Walton FS, Saunders RJ, Styblo M (2011) Characterization of the impaired glucose homeostasis produced in C57BL/6 mice by chronic exposure to arsenic and high-fat diet. Environ Health Perspect 119:1104–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • States JC, Srivastava S, Chen Y, Barchowsky A (2009) Arsenic and cardiovascular disease. Toxicol Sci 107:312–323

    Article  CAS  PubMed  Google Scholar 

  • Stýblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in human cells. Arch Toxicol 74:289–299

    Article  PubMed  Google Scholar 

  • Stýblo M, Drobná Z, Jaspers I, Lin S, Thomas DJ (2002) The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Perspect 110(Suppl 5):767–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas DJ, Li J, Waters SB, Xing W, Adair BM, Drobna Z, Devesa V, Styblo M (2007) Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp Biol Med (Maywood) 232:3–13

    CAS  Google Scholar 

  • Tseng C-H (2009) A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharmacol 235:338–350

    Article  CAS  PubMed  Google Scholar 

  • Vahter M (1994) Species differences in the metabolism of arsenic compounds. Appl Organomet Chem 8:175–182

    Article  CAS  Google Scholar 

  • Walton FS, Harmon AW, Paul DS, Drobna Z, Patel YM, Styblo M (2004) Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicol Appl Pharmacol 198:424–433

    Article  CAS  PubMed  Google Scholar 

  • Wang SL, Chang FH, Liou SH, Wang HJ, Li WF, Hsieh DP (2007) Inorganic arsenic exposure and its relation to metabolic syndrome in an industrial area of Taiwan. Environ Int 33:805–811

    Article  CAS  PubMed  Google Scholar 

  • Weyer C, Tataranni PA, Bogardus C, Pratley RE (2001) Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care 24:89–94

    Article  CAS  PubMed  Google Scholar 

  • Wnek SM, Kuhlman CL, Camarillo JM, Medeiros MK, Liu KJ, Lau SS, Gandolfi AJ (2011) Interdependent genotoxic mechanisms of monomethylarsonous acid: role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells. Toxicol Appl Pharmacol 257:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Jasmine F, Kibriya MG, Liu M, Wójcik O, Parvez F, Rahaman R, Roy S, Paul-Brutus R, Segers S, Slavkovich V, Islam T, Levy D, Mey JL, van Geen A, Graziano JH, Ahsan H, Chen Y (2012) Association between arsenic exposure from drinking water and plasma levels of cardiovascular markers. Am J Epidemiol 175:1252–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokohira M, Arnold LL, Pennington KL, Suzuki S, Kakiuchi-Kiyota S, Herbin-Davis K, Thomas DJ, Cohen SM (2010) Severe systemic toxicity and urinary bladder cytotoxicity and regenerative hyperplasia induced by arsenite in arsenic (+3 oxidation state) methyltransferase knockout mice. A preliminary report. Toxicol Appl Pharmacol 246:1–7

    Article  CAS  PubMed  Google Scholar 

  • Yokohira M, Arnold LL, Pennington KL, Suzuki S, Kakiuchi-Kiyota S, Herbin-Davis K, Thomas DJ, Cohen SM (2011) Effect of sodium arsenite dose administered in the drinking water on the urinary bladder epithelium of female arsenic (+3 oxidation state) methyltransferase knockout mice. Toxicol Sci 121:257–266

    Article  CAS  PubMed  Google Scholar 

  • Yu RC, Hsu KH, Chen CJ, Froines JR (2000) Arsenic methylation capacity and skin cancer. Cancer Epidemiol Biomarkers Prev 9:1259–1262

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. David Thomas (US EPA) for his continuous support and advice regarding the establishment and maintenance of As3mt-KO mouse colony at UNC Chapel Hill.

Funding

This work was supported by grants from the National Institute of Health (R01ES022697 and DK 056350) and in part by National Research Service Award from the National Institute of Environmental Health Sciences, NIH (T32 ES007126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Stýblo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douillet, C., Huang, M.C., Saunders, R.J. et al. Knockout of arsenic (+3 oxidation state) methyltransferase is associated with adverse metabolic phenotype in mice: the role of sex and arsenic exposure. Arch Toxicol 91, 2617–2627 (2017). https://doi.org/10.1007/s00204-016-1890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1890-9

Keywords

Navigation