Skip to main content
Log in

Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Perfluoroalkyl acids (PFAAs) are widespread environmental contaminants which have been detected in humans and linked to adverse health effects. Previous toxicological studies mostly focused on nuclear receptor-mediated pathways and did not support the observed toxic effects. In this study, we aimed to investigate the molecular mechanisms of PFAA toxicities by identifying their biological targets in cells. Using a novel electrochemical biosensor, 16 PFAAs were evaluated for inhibition of protein tyrosine phosphatase SHP-2 activity. Their potency increased with PFAA chain length, with perfluorooctadecanoic acid (PFODA) showing the strongest inhibition. Three selected PFAAs, 25 μM perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid, and PFODA, also inhibited SHP-2 activity in HepG2 cells and increased paxillin phosphorylation level. PFOA was detected in the immunoprecipitated SHP-2 from the cells exposed to 250 μM PFOA, providing unequivocal evidence for the direct binding of PFOA with SHP-2 in the cell. Molecular docking rationalized the formation of PFAA/SHP-2 complex and chain length-dependent inhibition potency. Our results have established SHP-2 as a new cellular target of PFAAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bard-Chapeau EA, Li SW, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V (2011) Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 19(5):629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry V, Winquist A, Steenland K (2013) Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect 121(11–12):1313–1318

    PubMed  PubMed Central  Google Scholar 

  • Benninghoff AD, Bisson WH, Koch DC, Ehresman DJ, Kolluri SK, William DE (2011) Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro. Toxicol Sci 120(1):42–58

    Article  CAS  PubMed  Google Scholar 

  • Butterworth S, Overduin M, Barr AJ (2014) Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Med Chem 6(12):1423–1437

    Article  CAS  PubMed  Google Scholar 

  • Chang ET, Adami HO, Boffetta P, Cole P, Starr TB, Mandel JS (2014) A critical review of perfluorooctanoate and perfluorooctane sulfonate exposure and cancer risk in humans. Crit Rev Toxicol 44(1):1–81

    Article  CAS  PubMed  Google Scholar 

  • Chen LW, Sung SS, Yip MLR, Lawrence HR, Ren Y, Guida WC, Sebti SM, Lawrence NJ, Wu J (2006) Discovery of a novel Shp2 protein tyrosine phosphatase inhibitor. Mol Pharmacol 70(2):562–570

    Article  CAS  PubMed  Google Scholar 

  • Conder JM, Hoke RA, de Wolf W, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory lipophilic compounds. Environ Sci Technol 42(4):995–1003

    Article  CAS  PubMed  Google Scholar 

  • Deakin NO, Turner CE (2008) Paxillin comes of age. J Cell Sci 121(15):2435–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb TB, Wong L, Salomon DS, Zhou GC, Dixon JE, Gutkind JS, Thompson SA, Johnson GR (1998) A common requirement for the catalytic activity and both SH2 domains of SHP-2 in mitogen-activated protein (MAP) kinase activation by the ErbB family of receptors—a specific role for SHP-2 in MAP, but not c-jun amino-terminal kinase activation. J Biol Chem 273(27):16643–16646

    Article  CAS  PubMed  Google Scholar 

  • DeWitt J, Shnyra A, Badr M, Loveless S, Hoban D, Frame S, Cunard R, Anderson S, Meade BJ, Peden-Adams M (2009) Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha. Crit Rev Toxicol 39(1):76–94

    Article  CAS  PubMed  Google Scholar 

  • Eriksen KT, Sorensen M, McLaughlin JK, Lipworth L, Tjonneland A, Overvad K, Raaschou-Nielsen O (2009) Perfluorooctanoate and perfluorooctane sulfonate plasma levels and risk of cancer in thegeneral Danish population. J Natl Cancer Inst 101(8):605–609

    Article  CAS  PubMed  Google Scholar 

  • Florentin A, Deblonde T, Diguio N, Hautemaniere A, Hartemann P (2011) Impacts of two perfluorinated compounds (PFOS and PFOA) on human hepatoma cells: cytotoxicity but no genotoxicity? Int J Hyg Environ Health 214(6):493–499

    Article  CAS  PubMed  Google Scholar 

  • Giesy JP, Kannan K (2002) Perfluorochemical surfactants in the environment. Environ Sci Technol 36(7):146A–152A

    Article  CAS  PubMed  Google Scholar 

  • Griffith FD, Long JE (1980) Animal toxicity studies with ammonium perfluorooctanoate. Am Ind Hyg Assoc J 41(8):576–583

    Article  CAS  PubMed  Google Scholar 

  • Hamann TW, Gstrein F, Brunschwig BS, Lewis NS (2005) Measurement of the free-energy dependence of interfacial charge-transfer rate constants using ZnO/H2O semiconductor/liquid contacts. J Am Chem Soc 127(21):7815–7824

    Article  CAS  PubMed  Google Scholar 

  • Hof P, Pluskey S, Dhe-paganon S, Eck MJ, Shoelson SE (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92(4):441–450

    Article  CAS  PubMed  Google Scholar 

  • Humblet O, Diaz-Ramirez LG, Balmes JR, Pinney SM, Hiatt RA (2014) Perfluoroalkyl chemicals and asthma among children 12–19 years of age: NHANES (1999–2008). Environ Health Perspect 122(10):1129–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CY, Hu FK, Tai YH, Du JL, Mao BB, Yuan ZQ, Wang Y, Wei LX (2012) The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J Cancer Res Clin Oncol 138(4):637–646

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM (2011) Trends in exposure to polyfluoroalkyl chemicals in the U.S. population: 1999–2008. Environ Sci Technol 45(19):8037–8045

    Article  CAS  PubMed  Google Scholar 

  • Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, Halldorsson TI, Becher G, Haug LS, Toft G (2013) Long-term effects of prenatal exposure to perfluoroalkyl substances on female reproduction. Hum Reprod 28(12):3337–3348

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Suzuki-Nakajima E, Mitsumoto A, Kawashima Y (2006) Responses of the liver to perfluorinated fatty acids with different carbon chain length in male and female mice: in relation to induction of hepatomegaly, peroxisomal beta-oxidation and microsomal 1-acylglycerophosphocholine acyltransferase. Biol Pharm Bull 29(9):1952–1957

    Article  CAS  PubMed  Google Scholar 

  • Li S, Hsu DDF, Wang H, Feng GS (2012) Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis. Front Med 6(3):275–279

    Article  PubMed  Google Scholar 

  • Liu DP, Kong GP, Chen QC, Wang GH, Li J, Xu Y, Lin T, Tian YP, Zhang XK, Yao XS (2011) Fatty acids as natural specific inhibitors of the proto-oncogenic protein Shp2. Bioorg Med Chem Lett 21(22):6833–6837

    Article  CAS  PubMed  Google Scholar 

  • Mohi MG, Neel BG (2007) The role of SHP-2 (PTPN11) in cancer. Curr Opin Genet Dev 17(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Muller PJ, Rigbolt KTG, Paterok D, Sobota RM (2013) Protein tyrosine phosphatase SHP-2/PTPN11 mistargeting as a consequence of SH2-domain point mutations associated with Noonan syndrome and leukemia. J Proteom 84:132–147

    Article  Google Scholar 

  • Ng CA, Hungerbuhler K (2014) Bioaccumulation of perfluorinated alkyl acids: observations and models. Environ Sci Technol 48(9):4637–4648

    Article  CAS  PubMed  Google Scholar 

  • Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR (2007) Half-life of serum elimination of perfluorooctane sulfonate, perfluorohexane sulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 115(9):1298–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez F, Nadal M, Navarro-Ortega A, Fabrega F, Domingo JL, Barcelo D, Farre M (2013) Accumulation of perfluoroalkyl substances in human tissues. Environ Int 59:354–362

    Article  CAS  PubMed  Google Scholar 

  • Qu N, Wan B, Guo LH (2008) Label-free electrochemical differentiation of phosphorylated and non-phosphorylated peptide by electro-catalyzed tyrosine oxidation. Analyst 133(9):1246–1249

    Article  CAS  PubMed  Google Scholar 

  • Ren XM, Zhang YF, Guo LH, Qin ZF, Lv QY, Zhang LY (2015) Structure-activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor. Arch Toxicol 89(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Sato I, Kawamoto K, Nishikawa Y, Tsuda S, Yoshida M, Yaegashi K, Saito N, Liu W, Jin YH (2009) Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J Toxicol Sci 34(5):569–574

    Article  CAS  PubMed  Google Scholar 

  • Simpson C, Winquist A, Lally C, Steenland K (2013) Relation between perfluorooctanoic acid exposure and strokes in a large cohort living near a chemical plant. Environ Res 127:22–28

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29(4):465–468

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Niemeyer CM, Shannon KM, Loh ML (2004) SHP-2 and myeloid malignancies. Curr Opin Hematol 11(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Toft G, Jonsson BAG, Lindh CH, Giwercman A, Spano M, Heederik D, Lenters V, Vermeulen R, Rylander L, Pedersen HS (2012) Exposure to perfluorinated compounds and human semen quality in arctic and European populations. Hum Reprod 27(8):2532–2540

    Article  CAS  PubMed  Google Scholar 

  • VandenHeuvel JP, Thompson JT, Frame SR, Gillies PJ (2006) Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 92(2):476–489

    Article  CAS  Google Scholar 

  • Vieira VM, Hoffman K, Shin HM, Weinberg JM, Webster TF, Fletcher T (2013) Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environ Health Perspect 121(3):318–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SF, Lv QY, Yang Y, Guo LH, Wan B, Zhao LX (2014a) Cellular target recognition of perfluoroalkyl acids: in vitro evaluation of inhibitory effects on lysine decarboxylase. Sci Total Environ 496:381–388

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Rogan WJ, Chen PC, Lien GW, Chen HY, Tseng YC, Longnecker MP, Wang SL (2014b) Association between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord thyroid hormones: Taiwan maternal and infant cohort study. Environ Health Perspect 122(5):529–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Liu W, Jin YH, Wang FQ, Ma JS (2015) Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers. Environ Toxicol 30(6):712–723

    Article  CAS  PubMed  Google Scholar 

  • White SS, Fentona SE, Hines EP (2011a) Endocrine disrupting properties of perfluorooctanoic acid. J Steroid Biochem Mol Biol 127(1–2):16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White SS, Stanko JP, Kato K, Calafat AM, Hines EP, Fenton SE (2011b) Gestational and chronic low-dose PFOA exposures and mammary gland growth and differentiation in three generations of CD-1 mice. Environ Health Perspect 119(8):1070–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf CJ, Schmid JE, Lau C, Abbott BD (2012) Activation of mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) by perfluoroalkyl acids (PFAAs): further investigation of C4–C12 compounds. Reprod Toxicol 33(4):546–551

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Xie Y, Alexson SHE, Nelson BD, DePierre JW (2002) Involvement of the peroxisome proliferator-activated receptor alpha in the immunomodulation caused by peroxisome proliferators in mice. Biochem Pharmacol 63(10):1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo LH, Qu N, Wei MY, Zhao LX, Wan B (2011) Label-free electrochemical measurement of protein tyrosine kinase activity and inhibition based on electro-catalyzed tyrosine signaling. Biosens Bioelectron 28(1):284–290

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Liu W, Yu WM, Loh ML, Alter S, Guvench O, MacKerell AD, Tang LD, Qu CK (2013) Targeting protein tyrosine phosphatase SHP2 for the treatment of PTPN11-associated malignancies. Mol Cancer Ther 12(9):1738–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Shi Z, Liu Y, Wei Y, Dai J (2008) Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid. Toxicol Appl Pharm 227(1):16–25

    Article  CAS  Google Scholar 

  • Zhang LY, Ren XM, Guo LH (2013a) Structure-based investigation on the interaction of perfluorinated compounds with human liver fatty acid binding protein. Environ Sci Technol 47(19):11293–11301

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Guo WJ, Yang Y, Liu W, Guo LL, Gu YH, Shu YQ, Wang L, Wu XF, Hua ZC (2013b) Loss of SHP-2 activity in CD4(+) T cells promotes melanoma progression and metastasis. Sci Rep 3:1–10

    Google Scholar 

  • Zhou Z, Shi YL, Vestergren R, Wang T, Liang Y, Cai YQ (2014) Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from Tangxun Lake, China. Environ Sci Technol 48(7):3864–3874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Academy of Sciences (XDB14040100) and National Natural Science Foundation of China (Nos. 21321004, 21577163, 21377142, 21377145, 21477146, 21407168, 91543203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Hong Guo.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest to declare.

Additional information

Yu Yang and Qi-Yan Lv contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Lv, QY., Guo, LH. et al. Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells. Arch Toxicol 91, 1697–1707 (2017). https://doi.org/10.1007/s00204-016-1836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1836-2

Keywords

Navigation