Skip to main content

Advertisement

Log in

Plasma-specific microRNA response induced by acute exposure to aristolochic acid I in rats

  • Biologics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Aristolochic acid I (AAI) derived from a natural herbal alkaloid is a nephrotoxicant. AAI-induced acute kidney injury (AKI), a devastating clinical disease associated with high mortality rates, is difficult for early diagnosis. To address this issue, we identified and validated early-detection biomarkers for AAI-induced acute kidney injury via profiling microRNA expression in rats. Global miRNA expression profile analysis found that 21 miRNAs were significantly dysregulated in kidney of rats treated by 40 mg/kg AAI on day 2, day 4, or day 6, among which 5 miRNAs were upregulated at all three time points. Quantitative RT-PCR confirmed that miR-21-3p on day 4 and day 6 was obviously upregulated in kidney of rats treated by 40 mg/kg AAI. Further examination found that miR-21-3p was increased in plasma early on day 2 in 10 mg/kg AAI-treated rats, but not in non-target organs. Importantly, the elevation of plasma miR-21-3p preceded the increase in blood urea nitrogen and creatinine, and the presence of renal tubular injury, characterized by differential increase before and after the presence of renal tubular lesions. Our findings thus show that miRNA expression is upregulated in kidney and plasma of AKI rat induced by AAI, and plasma miR-21-3p may be served as a new potential biomarker for early diagnosing AAI-induced acute kidney injury in rats, and possibly in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonoqi H, Lwai N (2010) Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 56(7):1183–1185

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  • Cosyns JP, Goebbels RM, Liberton V, Schmeiser HH, Bieler CA, Bernard AM (1998) Chinese herbs nephropathy-associated slimming regimen induces tumours in the forestomach but no interstitial nephropathy in rats. Arch Toxicol 72(11):738–743

    Article  CAS  PubMed  Google Scholar 

  • De Broe ME (1999) On a nephrotoxic and carcinogenic slimming regimen. Am J Kidney Dis 33(6):1171–1173

    Article  PubMed  Google Scholar 

  • Debelle F, Nortier J, Arlt VM, De Prez E, Vienne A, Salmon I, Phillips DH, Deschodt-Lanckman M, Vanherweghem JL (2003) Effects of dexfenfluramine on aristolochic acid nephrotoxicity in a rat model for Chinese-herb nephropathy. Arch Toxicol 77(4):218–226

    Article  CAS  PubMed  Google Scholar 

  • Doberstein K, Bretz NP, Schirmer U, Fiegl H, Blaheta R, Breunig C, Müller-Holzner E, Reimer D, Zeimet AG, Altevogt P (2014) MiR-21-3p is a positive regulator of L1CAM in several human carcinomas. Cancer Lett 354(2):455–466

    Article  CAS  PubMed  Google Scholar 

  • Dračínská H, Bárta F, Levová K, Hudecová A, Moserová M, Schmeiser HH, Kopka K, Frei E, Arlt VM, Stiborová M (2016) Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo. Toxicol 344:7–18

    Article  Google Scholar 

  • Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, Slade N, Turesky RJ, Goodenough AK, Rieger R, Vukelić M, Jelaković B (2007) Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 104(29):12129–12134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IARC (2012) A review of human carcinogens: pharmaceuticals. IARC Monogr Eval Carcinog Risks Hum 100A(37):347–361

    Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  CAS  PubMed  Google Scholar 

  • Jenkins RH, Davies LC, Taylor PR, Akiyama H, Cumbes B, Beltrami C, Carrington CP, Phillips AO, Bowen T, Fraser DJ (2014) miR-192 induces G2/M growth arrest in aristolochic acid nephropathy. Am J Pathol 184(4):996–1009

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Lwai N (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55(11):1944–1949

    Article  CAS  PubMed  Google Scholar 

  • Khalid U, Ablorsu E, Szabo L, Jenkins RH, Bowen T, Chavez R, Fraser DJ (2016) MicroRNA-21 (miR-21) expression in hypothermic machine perfusate may be predictive of early outcomes in kidney transplantation. Clin Transplant 30(2):99–104

    Article  CAS  PubMed  Google Scholar 

  • Kumarswamy R, Volkmann I, Thum T (2011) Regulation and function of miRNA-21 in health and disease. RNA Biol 8(5):706–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupchan SM, Doskotch RW (1962) Tumor inhibitors. I. Aristolochic acid, the active principle of Aristolochia indica. J Med Pharm Chem 5(3):657–659

    Article  CAS  Google Scholar 

  • Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675

    Article  PubMed  Google Scholar 

  • Lebeau C, Debelle FD, Arlt VM, Pozdzik A, De Prez EG, Phillips DH, Deschodt Lanckman MM, Vanherweghem JL, Nortier JL (2005) Early proximal tubule injure in experimental aristolochic acid nephropathy: functional and histological studies. Nephrol Dial Transplant 20(11):2321–2332

    Article  PubMed  Google Scholar 

  • Li Y, Liu Z, Guo X, Shu J, Chen Z, Li L (2006) Aristolochic acid I-induced DNA damage and cell cycle arrest in renal tubular epithelial cells in vitro. Arch Toxicol 80(8):524–532

    Article  CAS  PubMed  Google Scholar 

  • Lo TF, Tsai WC, Chen ST (2013) MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS One 8(9):e75628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzen JM, Thum T (2012) Circulating and urinary microRNAs in kidney disease. Clin J Am Soc Nephrol 7(9):1528–1533

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Li Z, Yan J, Manjanatha M, Shelton S, Yarborough S, Chen T (2014) Tissue-specific microRNA responses in rats treated with mutagenic and carcinogenic doses of aristolochic acid. Mutagenesis 29(5):357–365

    Article  CAS  PubMed  Google Scholar 

  • Mengs U (1983) On the histopathogenesis of rat forestomach carcinoma caused by aristolochic acid. Arch Toxicol 52:209–220

    Article  CAS  PubMed  Google Scholar 

  • Mengs U (1987) Acute toxicity of aristolochic acid in rodents. Arch Toxicol 59:328–331

    Article  CAS  PubMed  Google Scholar 

  • Mengs U (1988) Tumour induction in mice following exposure to aristolochic acid. Arch Toxicol 61(6):504–505

    Article  CAS  PubMed  Google Scholar 

  • Mengs U, Stotzem CD (1993) Renal toxicity of aristolochic acid in rats as an example of nephrotoxicity testing in routine toxicology. Arch Toxicol 67(5):307–311

    Article  CAS  PubMed  Google Scholar 

  • Michl J, Ingrouille MJ, Simmonds MS, Heinrich M (2014) Naturally occurring aristolochic acid analogues and their toxicities. Nat Prod Rep 31:676–693

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molitoris JK, Molitoris BA (2011) Circulating Micro–RNAs in acute kidney injury: early observations. Clin J Am Soc Nephrol 6(7):1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Molitoris BA, Melnikov VY, Okusa MD, Himmelfarb J (2008) Technology Insight: biomarker development in acute kidney injury—what can we anticipate? Nat Clin Pract Nephrol 4(3):154–165

    Article  CAS  PubMed  Google Scholar 

  • National Toxicology Program (2008) Final report on carcinogens background document for aristolochic acids. NIEHS, Research Triangle Park. http://ntp.niehs.nih.gov/ntp/roc/twelfth/2010/finalbds/aristolochic_acids_final_508.pdf

  • National Toxicology Program (2014) Report on carcinogens, 13th edn. NIEHS, Research Triangle Park. http://ntp.niehs.nih.gov/ntp/roc/content/profiles/aristolochicacids.pdf

  • Nortier JL, Martinez MC, Schmeiser HH, Arlt VM, Bieler CA, Petein M, Depierreux MF, De Pauw L, Abramowicz D, Vereerstraeten P, Vanherweghem JL (2000) Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 342(23):1686–1692

    Article  CAS  PubMed  Google Scholar 

  • Parikh CR, Garg AX (2008) Acute kidney injury: better biomarkers and beyond. Kidney Int 73(7):801–803

    Article  CAS  PubMed  Google Scholar 

  • Romanov V, Whyard TC, Waltzer WC, Grollman AP, Rosenquist T (2015) Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation. Arch Toxicol 89(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Ruvkun G (2008) The perfect storm of tiny RNAs. Nat Med 14(10):1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Saikumar J, Hoffmann D, Kim TM, Gonzalez VR, Zhang Q, Goering PL, Brown RP, Bijol V, Park PJ, Waikar SS, Vaidya VS (2012) Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci 129(2):256–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeiser HH, Kucab JE, Arlt VM, Phillips DH, Hollstein M, Gluhovschi G, Gluhovschi C, Modilca M, Daminescu L, Petrica L, Velciov S (2012) Evidence of exposure to aristolochic acid in patients with urothelial cancer from a Balkan endemic nephropathy region of Romania. Environ Mol Mutagen 53:636–641

    Article  CAS  PubMed  Google Scholar 

  • Schmeiser HH, Nortier JL, Singh R, Gamboa da Costa G, Sennesael J, Cassuto-Viguier E, Ambrosetti D, Rorive S, Pozdzik A, Phillips DH, Stiborova M, Arlt VM (2014) Exceptionally long-term persistence of DNA adducts formed by carcinogenic aristolochic acid I in renal tissue from patients with aristolochic acid nephropathy. Int J Cancer 135:562–567

    Article  Google Scholar 

  • Shibutani S, Dong H, Suzuki N, Ueda S, Miller F, Grollman AP (2007) Selective toxicity of aristolochic acids I and II. Drug Metab Dispos 35(7):1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Stiborová M, Bárta F, Levová K, Hodek P, Frei E, Arlt VM, Schmeiser HH (2015) The influence of ochratoxin A on DNA adduct formation by the carcinogen aristolochic acid in rats. Arch Toxicol 89(11):2141–2158

    Article  PubMed  Google Scholar 

  • Tang G, Tang X, Mendu V, Tang X, Jia X, Chen OJ, He L (2008) The art of microRNA: various strategies leading to gene silencing via an ancient pathway. Biochim Biophys Acta 1779(11):655–662

    Article  CAS  PubMed  Google Scholar 

  • Waldman SA, Terzic A (2008) MicroRNA signatures as diagnostic and therapeutic targets. Clin Chem 54(6):943–944

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Diederichs S (2013) Argonaute-3 activates the let-7a passenger strand microRNA. RNA Biol 10(10):1631–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  PubMed  Google Scholar 

  • Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC, Lai EC (2011) Widespread regulatory activity of vertebrate microRNA* species. RNA 17(2):312–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang L, Wang W, Wang H (2013) Association between aristolochic acid and CKD: a cross-sectional survey in China. Am J Kidney Dis 61(6):918–922

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science and Technology Major Project of China (2012ZX095001-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-an Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures that involved animals were in accordance with the ethical standards of the institution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Xy., Shen, Jy., Deng, Zp. et al. Plasma-specific microRNA response induced by acute exposure to aristolochic acid I in rats. Arch Toxicol 91, 1473–1483 (2017). https://doi.org/10.1007/s00204-016-1791-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1791-y

Keywords

Navigation