Skip to main content

Advertisement

Log in

Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Many usnic acid-containing dietary supplements have been marketed as weight loss agents, although severe hepatotoxicity and acute liver failure have been associated with their overuse. Our previous mechanistic studies revealed that autophagy, disturbance of calcium homeostasis, and ER stress are involved in usnic acid-induced toxicity. In this study, we investigated the role of oxidative stress and the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. We found that a 24-h treatment with usnic acid caused DNA damage and S-phase cell cycle arrest in a concentration-dependent manner. Usnic acid also triggered oxidative stress as demonstrated by increased reactive oxygen species generation and glutathione depletion. Short-term treatment (6 h) with usnic acid significantly increased the protein level for Nrf2 (nuclear factor erythroid 2-related factor 2), promoted Nrf2 translocation to the nucleus, up-regulated antioxidant response element (ARE)-luciferase reporter activity, and induced the expression of Nrf2-regulated targets, including glutathione reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 (NQO1). Furthermore, knockdown of Nrf2 with shRNA potentiated usnic acid-induced DNA damage and cytotoxicity. Taken together, our results show that usnic acid causes cell cycle dysregulation, DNA damage, and oxidative stress and that the Nrf2 signaling pathway is activated in usnic acid-induced cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL (1999) Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274(37):26071–26078

    Article  CAS  PubMed  Google Scholar 

  • Araujo AA, de Melo MG, Rabelo TK, Nunes PS, Santos SL, Serafini MR, Santos MR, Quintans-Junior LJ, Gelain DP (2015) Review of the biological properties and toxicity of usnic acid. Nat Prod Res 29(23):2167–2180

    Article  CAS  PubMed  Google Scholar 

  • Baird L, Lleres D, Swift S, Dinkova-Kostova AT (2013) Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc Natl Acad Sci USA 110(38):15259–15264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  CAS  PubMed  Google Scholar 

  • Bertoli C, Skotheim JM, de Bruin RA (2013) Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14(8):518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85(6):705–717

    Article  CAS  PubMed  Google Scholar 

  • Cederbaum AI, Lu Y, Wu D (2009) Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83(6):519–548

    Article  CAS  PubMed  Google Scholar 

  • CFSAN (2001) FDA warns consumers not to use the dietary supplement LipoKinetix. http://www.fdagov/safety/medwatch/safetyinformation/safetyalertsforhumanmedicalproducts/ucm174455htm. Accessed 15 Dec 2015

  • Chan K, Han XD, Kan YW (2001) An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci USA 98(8):4611–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Dobrovolsky VN, Liu F, Wu Y, Zhang Z, Mei N, Guo L (2014a) The role of autophagy in usnic acid-induced toxicity in hepatic cells. Toxicol Sci 142(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Xuan J, Couch L, Iyer A, Wu Y, Li QZ, Guo L (2014b) Sertraline induces endoplasmic reticulum stress in hepatic cells. Toxicology 322:78–88

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhang Z, Wu Y, Shi Q, Yan H, Mei N, Tolleson WH, Guo L (2015) Endoplasmic reticulum stress and store-operated calcium entry contribute to usnic acid-induced toxicity in hepatic cells. Toxicol Sci 146(1):116–126

    Article  CAS  PubMed  Google Scholar 

  • de Paz GA, Raggio J, Gomez-Serranillos MP, Palomino OM, Gonzalez-Burgos E, Carretero ME, Crespo A (2010) HPLC isolation of antioxidant constituents from Xanthoparmelia spp. J Pharm Biomed Anal 53(2):165–171

    Article  PubMed  Google Scholar 

  • Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Phys India 52:794–804

    CAS  Google Scholar 

  • Doi H, Iwasaki H, Masubuchi Y, Nishigaki R, Horie T (2002) Chemiluminescence associated with the oxidative metabolism of salicylic acid in rat liver microsomes. Chem Biol Interact 140(2):109–119

    Article  CAS  PubMed  Google Scholar 

  • Durazo FA, Lassman C, Han SH, Saab S, Lee NP, Kawano M, Saggi B, Gordon S, Farmer DG, Yersiz H, Goldstein RL, Ghobrial M, Busuttil RW (2004) Fulminant liver failure due to usnic acid for weight loss. Am J Gastroenterol 99(5):950–952

    Article  PubMed  Google Scholar 

  • Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O’Connor T, Harada T, Yamamoto M (2001) High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 59(1):169–177

    Article  CAS  PubMed  Google Scholar 

  • Evans MD, Cooke MS (2004) Factors contributing to the outcome of oxidative damage to nucleic acids. BioEssays 26(5):533–542

    Article  CAS  PubMed  Google Scholar 

  • Favreau JT, Ryu ML, Braunstein G, Orshansky G, Park SS, Coody GL, Love LA, Fong TL (2002) Severe hepatotoxicity associated with the dietary supplement LipoKinetix. Ann Intern Med 136(8):590–595

    Article  PubMed  Google Scholar 

  • Glebska J, Skolimowski J, Kudzin Z, Gwozdzinski K, Grzelak A, Bartosz G (2003) Pro-oxidative activity of nitroxides in their reactions with glutathione. Free Radic Biol Med 35(3):310–316

    Article  CAS  PubMed  Google Scholar 

  • Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT, Investigators DS (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Shi Q, Fang JL, Mei N, Ali AA, Lewis SM, Leakey JE, Frankos VH (2008) Review of usnic acid and Usnea barbata toxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26(4):317–338

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Dial S, Shi L, Branham W, Liu J, Fang JL, Green B, Deng H, Kaput J, Ning B (2011) Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos 39(3):528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Chen S, Zhang Z, Dobrovolsky VN, Dial SL, Guo L, Mei N (2015) Reactive oxygen species and c-Jun N-terminal kinases contribute to TEMPO-induced apoptosis in L5178Y cells. Chem Biol Interact 235:27–36

    Article  CAS  PubMed  Google Scholar 

  • Han D, Matsumaru K, Rettori D, Kaplowitz N (2004) Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem Pharmacol 67(3):439–451

    Article  CAS  PubMed  Google Scholar 

  • Harder B, Jiang T, Wu T, Tao S, de la Vega MR, Tian W, Chapman E, Zhang DD (2015) Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans 43(4):680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes JD, Chanas SA, Henderson CJ, McMahon M, Sun C, Moffat GJ, Wolf CR, Yamamoto M (2000) The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem Soc Trans 28(2):33–41

    Article  CAS  PubMed  Google Scholar 

  • Hinson JA, Roberts DW, James LP (2010) Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol 196:369–405

    Article  CAS  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ (2002) Mechanisms of hepatotoxicity. Toxicol Sci 65(2):166–176

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24(16):7130–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koparal AT, Tuylu BA, Turk H (2006) In vitro cytotoxic activities of (+)-usnic acid and (−)-usnic acid on V79, A549, and human lymphocyte cells and their non-genotoxicity on human lymphocytes. Nat Prod Res 20(14):1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Leandro LF, Munari CC, Sato VL, Alves JM, de Oliveira PF, Mastrocola DF, Martins Sde P, Moraes Tda S, de Oliveira AI, Tozatti MG, Cunha WR, Tavares DC (2013) Assessment of the genotoxicity and antigenotoxicity of (+)-usnic acid in V79 cells and Swiss mice by the micronucleus and comet assays. Mutat Res 753(2):101–106

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zhao Q, Tian Y, Xiao S, Jin T, Fan X (2011) A metabonomic characterization of (+)-usnic acid-induced liver injury by gas chromatography-mass spectrometry-based metabolic profiling of the plasma and liver in rat. Int J Toxicol 30(5):478–491

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Miyakawa K, Roth RA, Ganey PE (2013) Tumor necrosis factor-alpha potentiates the cytotoxicity of amiodarone in Hepa1c1c7 cells: roles of caspase activation and oxidative stress. Toxicol Sci 131(1):164–178

    Article  CAS  PubMed  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Neff GW, Reddy KR, Durazo FA, Meyer D, Marrero R, Kaplowitz N (2004) Severe hepatotoxicity associated with the use of weight loss diet supplements containing ma huang or usnic acid. J Hepatol 41(6):1062–1064

    Article  PubMed  Google Scholar 

  • Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning B, Dial S, Sun Y, Wang J, Yang J, Guo L (2008) Systematic and simultaneous gene profiling of 84 drug-metabolizing genes in primary human hepatocytes. J Biomol Screen 13(3):194–201

    Article  CAS  PubMed  Google Scholar 

  • Odabasoglu F, Cakir A, Suleyman H, Aslan A, Bayir Y, Halici M, Kazaz C (2006) Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J Ethnopharmacol 103(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96(9):2181–2196

    Article  CAS  PubMed  Google Scholar 

  • Polat Z, Aydin E, Turkez H, Aslan A (2016) In vitro risk assessment of usnic acid compound. Toxicol Ind Health 32(3):468–475

    Article  CAS  PubMed  Google Scholar 

  • Rabelo TK, Zeidan-Chulia F, Vasques LM, dos Santos JP, da Rocha RF, Pasquali MA, Rybarczyk-Filho JL, Araujo AA, Moreira JC, Gelain DP (2012) Redox characterization of usnic acid and its cytotoxic effect on human neuron-like cells (SH-SY5Y). Toxicol In Vitro 26(2):304–314

    Article  CAS  PubMed  Google Scholar 

  • Ravanat JL, Martinez GR, Medeiros MH, Di Mascio P, Cadet J (2004) Mechanistic aspects of the oxidation of DNA constituents mediated by singlet molecular oxygen. Arch Biochem Biophys 423(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  • Sahu SC, Amankwa-Sakyi M, O’Donnell MW Jr, Sprando RL (2012) Effects of usnic acid exposure on human hepatoblastoma HepG2 cells in culture. J Appl Toxicol 32(9):722–730

    Article  CAS  PubMed  Google Scholar 

  • Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28(9):1387–1404

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Greenhaw J, Salminen WF (2014) Inhibition of cytochrome P450s enhances (+)-usnic acid cytotoxicity in primary cultured rat hepatocytes. J Appl Toxicol 34(8):835–840

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    Article  CAS  PubMed  Google Scholar 

  • Solis WA, Dalton TP, Dieter MZ, Freshwater S, Harrer JM, He L, Shertzer HG, Nebert DW (2002) Glutamate-cysteine ligase modifier subunit: mouse Gclm gene structure and regulation by agents that cause oxidative stress. Biochem Pharmacol 63(9):1739–1754

    Article  CAS  PubMed  Google Scholar 

  • Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62(18):5196–5203

    CAS  PubMed  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 93(25):14960–14965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertuani S, Angusti A, Manfredini S (2004) The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des 10(14):1677–1694

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, He X, Li X, Xu W, Luo Y, Yang X, Wang Y, Li Y, Huang K (2014) DNA damage and S phase arrest induced by Ochratoxin A in human embryonic kidney cells (HEK 293). Mutat Res 765:22–31

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD (2003) Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 11(2):341–351

    Article  CAS  PubMed  Google Scholar 

  • Yellapu RK, Mittal V, Grewal P, Fiel M, Schiano T (2011) Acute liver failure caused by ‘fat burners’ and dietary supplements: a case report and literature review. Can J Gastroenterol 25(3):157–160

    Article  PubMed  Google Scholar 

  • Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WH, Poh A, Fanous AA, Eastman A (2008) DNA damage-induced S phase arrest in human breast cancer depends on Chk1, but G(2) arrest can occur independently of Chk1, Chk2 or MAPKAPK2. Cell Cycle 7(11):1668–1677

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen S, Mei H, Xuan J, Guo X, Couch L, Dobrovolsky VN, Guo L, Mei N (2015) Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells. Sci Rep 5:14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

ZH. Z., DK. Y., and Z. R. were supported by appointments to the Postgraduate Research Program at the National Center for Toxicological Research administered by the Oak Ridge Institute for Science Education through an interagency agreement between the US Department of Energy and the U.S. FDA. This work was supported by U.S. FDA’s intramural grant. L.S. was supported by the National High Technology Research and Development Program of China (2015AA020104), the National Natural Science Foundation of China (31471239), the 111 Project (B13016), and the National Supercomputer Center in Guangzhou, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Guo.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Additional information

Disclaimer This article is not an official guidance or policy statement of the U.S. FDA. No official support or endorsement by the U.S. FDA is intended or should be inferred.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhang, Z., Qing, T. et al. Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. Arch Toxicol 91, 1293–1307 (2017). https://doi.org/10.1007/s00204-016-1775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1775-y

Keywords

Navigation