Skip to main content

Advertisement

Log in

Oral uptake of nanoparticles: human relevance and the role of in vitro systems

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) present in environment, consumer and health products, food and medical applications lead to a high degree of human exposure and concerns about potential adverse effects on human health. For the general population, the exposure through contact with the skin, inhalation and oral uptake are most relevant. Since in vivo testing is only partly able to study the effects of human oral exposure, physiologically relevant in vitro systems are being developed. This review compared the three routes taking into account the estimated concentration, size of the exposed area, morphology of the involved barrier and translocation rate. The high amounts of NPs in food, the large absorption area and the relatively high translocation rate identified oral uptake as most important portal of entry for NPs into the body. Changes of NP properties in the physiological fluids, mechanisms to cross mucus and epithelial barrier, and important issues in the use of laboratory animals for oral exposure are mentioned. The ability of in vitro models to address the varying conditions along the oro-gastrointestinal tract is discussed, and requirements for physiologically relevant in vitro testing of orally ingested NPs are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aljayyoussi G, Abdulkarim M, Griffiths P, Gumbleton M (2012) Pharmaceutical nanoparticles and the mucin biopolymer barrier. Bioimpacts 2(4):173–174. doi:10.5681/bi.2012.029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99(1):53–62. doi:10.1016/j.jconrel.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1(2):a002584. doi:10.1101/cshperspect.a002584

    Article  PubMed  PubMed Central  Google Scholar 

  • Antunes F, Andrade F, Araujo F, Ferreira D, Sarmento B (2013) Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm 83(3):427–435. doi:10.1016/j.ejpb.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  • Astashkina A, Mann B, Grainger DW (2012) A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 134(1):82–106. doi:10.1016/j.pharmthera.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  • Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280(5):G922–G929

    CAS  PubMed  Google Scholar 

  • Axson J, Stark D, Bondy A et al (2015) Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C 119(35):20632–20641. doi:10.1021/acs.jpcc.5b03634

    Article  CAS  Google Scholar 

  • Bachler G, Losert S, Umehara Y et al (2015) Translocation of gold nanoparticles across the lung epithelial tissue barrier: combining in vitro and in silico methods to substitute in vivo experiments. Part Fibre Toxicol 12:18. doi:10.1186/s12989-015-0090-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banga A (2011) Experimental methods and tools for transdermal delivery by physical enhancement methods. In: Banga A (ed) Transdermal and intradermal delivery of therapeutic agents: application of physical technologies. CRC Press, Boca Raton, pp 27–52

    Chapter  Google Scholar 

  • Bellmann S, Carlander D, Fasano A et al (2015) Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(5):609–622. doi:10.1002/wnan.1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat M, Toledo-Velasquez D, Wang L, Malanga CJ, Ma JK, Rojanasakul Y (1993) Regulation of tight junction permeability by calcium mediators and cell cytoskeleton in rabbit tracheal epithelium. Pharm Res 10(7):991–997

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772. doi:10.1038/nbt.2989

    Article  CAS  PubMed  Google Scholar 

  • Bian S, Mudunkotuwa I, Rupasinghe T, Grassian V (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27(10):6059–6068. doi:10.1021/la200570n

    Article  CAS  PubMed  Google Scholar 

  • Bickel M, Kauffman GL Jr (1981) Gastric gel mucus thickness: effect of distention, 16,16-dimethyl prostaglandin e2, and carbenoxolone. Gastroenterology 80(4):770–775

    CAS  PubMed  Google Scholar 

  • Boukamp P, Rupniak HT, Fusenig NE (1985) Environmental modulation of the expression of differentiation and malignancy in six human squamous cell carcinoma cell lines. Cancer Res 45(11 Pt 2):5582–5592

    CAS  PubMed  Google Scholar 

  • Bouwmeester H, Poortman J, Peters RJ et al (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5(5):4091–4103. doi:10.1021/nn2007145

    Article  CAS  PubMed  Google Scholar 

  • Braakhuis HM, Kloet SK, Kezic S et al (2015) Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol 89(9):1469–1495. doi:10.1007/s00204-015-1518-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzza MS, Netzel-Arnett S, Shea-Donohue T et al (2010) Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci USA 107(9):4200–4205. doi:10.1073/pnas.0903923107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho WS, Kang BC, Lee JK, Jeong J, Che JH, Seok SH (2013) Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9. doi:10.1186/1743-8977-10-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chortarea S, Clift MJ, Vanhecke D et al (2015) Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology 9(8):983–993. doi:10.3109/17435390.2014.993344

    Article  PubMed  CAS  Google Scholar 

  • Collins LM, Dawes C (1987) The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res 66(8):1300–1302. doi:10.1177/00220345870660080201

    Article  CAS  PubMed  Google Scholar 

  • Copeman M, Matuz J, Leonard AJ, Pearson JP, Dettmar PW, Allen A (1994) The gastroduodenal mucus barrier and its role in protection against luminal pepsins: the effect of 16,16 dimethyl prostaglandin E2, carbopol-polyacrylate, sucralfate and bismuth subsalicylate. J Gastroenterol Hepatol 9(suppl 1):S55–S59

    Article  PubMed  Google Scholar 

  • Corfield AP, Wagner SA, Clamp JR, Kriaris MS, Hoskins LC (1992) Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 60(10):3971–3978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20(3):148–154. doi:10.1159/000098701

    Article  CAS  PubMed  Google Scholar 

  • Da Silva LC, Da Silva TL, Antunes AH, Rezende KR (2015) A sensitive medium-throughput method to predict intestinal absorption in humans using rat intestinal tissue segments. J Pharm Sci 104(9):2807–2812. doi:10.1002/jps.24372

    Article  PubMed  CAS  Google Scholar 

  • Davies DJ, Ward RJ, Heylings JR (2004) Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol Vitro 18(3):351–358. doi:10.1016/j.tiv.2003.10.004

    Article  CAS  Google Scholar 

  • Dekkers S, Krystek P, Peters RJ et al (2011) Presence and risks of nanosilica in food products. Nanotoxicology 5(3):393–405. doi:10.3109/17435390.2010.519836

    Article  CAS  PubMed  Google Scholar 

  • des Rieux A, Ragnarsson EG, Gullberg E, Preat V, Schneider YJ, Artursson P (2005) Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci 25(4–5):455–465. doi:10.1016/j.ejps.2005.04.015

    Article  CAS  PubMed  Google Scholar 

  • des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116(1):1–27. doi:10.1016/j.jconrel.2006.08.013

    Article  CAS  PubMed  Google Scholar 

  • Rieux A, Fievez V, Theate I, Mast J, Preat V, Schneider YJ (2007) An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Sci 30(5):380–391. doi:10.1016/j.ejps.2006.12.006

    Article  PubMed  CAS  Google Scholar 

  • DeSesso JM, Jacobson CF (2001) Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol 39(3):209–228. doi:10.1016/S0278-6915(00)00136-8

    Article  CAS  PubMed  Google Scholar 

  • Donato RP, El-Merhibi A, Gundsambuu B et al (2011) Studying permeability in a commonly used epithelial cell line: T84 intestinal epithelial cells. Methods Mol Biol 763:115–137. doi:10.1007/978-1-61779-191-8_8

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt C, Laue M, Kim K (2008) In vitro models of the alveolar epithelial barrier. In: Ehrhardt C, Kim K (eds) Drug absorption studies in situ, in vitro and in silico models. Springer Science + Business Media LCC, New York

  • Elzey S, Grassian V (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12:1945–1958. doi:10.1007/s11051-009-9783-y

    Article  CAS  Google Scholar 

  • Endes C, Schmid O, Kinnear C et al (2014) An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Part Fibre Toxicol 11:40. doi:10.1186/s12989-014-0040-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–570. doi:10.1016/j.addr.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  • Esch MB, Mahler GJ, Stokol T, Shuler ML (2014) Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14(16):3081–3092. doi:10.1039/c4lc00371c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Commission (2006) COMMISSION RECOMMENDATION of 22 September 2006 on the efficacy of sunscreen products and the claims made relating thereto. 2006/647/EC OJ L 265/39

  • Fasano WJ, Manning LA, Green JW (2002) Rapid integrity assessment of rat and human epidermal membranes for in vitro dermal regulatory testing: correlation of electrical resistance with tritiated water permeability. Toxicol In Vitro 16(6):731–740. doi:10.1016/S0887-2333(02)00084-X

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Pego C, Guelinckx I, Moreno LA et al (2015) Total fluid intake and its determinants: cross-sectional surveys among adults in 13 countries worldwide. Eur J Nutr 54(Suppl 2):35–43. doi:10.1007/s00394-015-0943-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Forstner J, Oliver M, Sylvester F (1995) Production, structure and biologic relevance of gastrointestinal mucus. In: Blaser M, Smith P, Ravdin J, Greenberg H, Guerrant R (eds) Infections of the gastrointestinal tract. Raven Press, New York, pp 7–88

    Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591. doi:10.2147/IJN.S36111

    Article  PubMed  PubMed Central  Google Scholar 

  • Fröhlich E, Roblegg E (2012) Models for oral uptake of nanoparticles in consumer products. Toxicology 291(1–3):10–17. doi:10.1016/j.tox.2011.11.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fröhlich E, Roblegg E (2014) Mucus as physiological barrier to intracellular delivery. In: Prokop A, Iwasaki Y, Harada A (eds) Intracellular delivery fundamentals and applications. Fundamental Biomedical Technologies, vol 7. Springer Science + Business Media, Dordrecht, pp 139–163

  • Gabe S (2016) Small intestine. In: Stringer M, Smith A, Wein A (eds) Abdomen and pelvis. Gray’s anatomy: the anatomical basis of clinical practice, 41st edn. Elsevier, Amsterdam, pp 1124–1135

  • Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Kanda Y, Nakajima H, Sakagami H (2014) Induction of prostaglandin E2 production by TiO2 nanoparticles in human gingival fibroblast. Vivo 28(2):217–222

    CAS  Google Scholar 

  • Garcia-Contreras R, Sugimoto M, Umemura N et al (2015) Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model. Biomaterials 57:33–40. doi:10.1016/j.biomaterials.2015.03.059

    Article  CAS  PubMed  Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560

    Article  PubMed  PubMed Central  Google Scholar 

  • Grassi M, Grassi G, Lapasin R, Italo C (2007) Gastrointestinal Tract. In: Grassi M, Grassi G, Lapasin R, Italo C (eds) Understanding drug release and absorption mechanisms: a physical and mathematical approach. CRC Press, Boca Raton, pp 28–52

    Google Scholar 

  • Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: serum-free cell culture. Altex 20(4):275–281

    PubMed  Google Scholar 

  • Gullberg E, Leonard M, Karlsson J et al (2000) Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem Biophys Res Commun 279(3):808–813. doi:10.1006/bbrc.2000.4038

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson JK, Hansson GC, Sjovall H (2012) Ulcerative colitis patients in remission have an altered secretory capacity in the proximal colon despite macroscopically normal mucosa. Neurogastroenterol Motil 24(8):e381–e391. doi:10.1111/j.1365-2982.2012.01958.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen A (2014) Animal models of metabolic and inflammatory diseases. In: Hau J, Schapiro S (eds) Handbook of laboratory animal science, Vol III, 3rd edn: animal models. CRC Press, Boca Raton, pp 159–194

  • Hasleton PS (1972) The internal surface area of the adult human lung. J Anat 112(Pt 3):391–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haycock JW (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol Biol 695:1–15. doi:10.1007/978-1-60761-984-0_1

    Article  CAS  PubMed  Google Scholar 

  • Helander HF, Fandriks L (2014) Surface area of the digestive tract—revisited. Scand J Gastroenterol 49(6):681–689. doi:10.3109/00365521.2014.898326

    Article  PubMed  Google Scholar 

  • Henderson L, Irving K, Gregory J (2003) The national diet & nutrition survey: adults aged 19 to 64 years. Vitamin and mineral intake and urinary analytes. Controller of Her Majesty’s Stationery Office (HMSO), Norwich

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90(12):1927–1936. doi:10.1002/jps.1143

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann G, Cracknell S, Damiano J, Macri N, Moore S (2014) Inhalation toxicology. In: Derelanko M, Auletta C (eds) Handbook of toxicology. CRC Press, Boca Raton

    Google Scholar 

  • Holladay J (2003) Biopharmaceutics of orally ingested products. In: McCabe B, Frankel E, Wolfe J (eds) Handbook of food–drug interactions. CRC Press, Boca Raton, pp 16–24

    Google Scholar 

  • Hoskins LC, Boulding ET (1981) Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest 67(1):163–172. doi:10.1172/JCI110009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes MF, Shrivastava SP, Fisher HL, Hall LL (1993) Comparative in vitro percutaneous absorption of p-substituted phenols through rat skin using static and flow-through diffusion systems. Toxicol In Vitro 7(3):221–227

    Article  CAS  PubMed  Google Scholar 

  • Huh CH, Bhutani MS, Farfan EB, Bolch WE (2003) Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound. Physiol Meas 24(4):N15–N22

    Article  CAS  PubMed  Google Scholar 

  • ICRP (1975) International Commission on Radiological Protection. Report of the Task Group on Reference Man. No. 23, vol Adopted October 1974. Pergamon Press, Oxford

  • ICRP (1994) Human respiratory tract model for radiological protection. Ann ICRP 24:1–3

    Google Scholar 

  • Jacobsen J, Nielsen EB, Brondum-Nielsen K et al (1999) Filter-grown TR146 cells as an in vitro model of human buccal epithelial permeability. Eur J Oral Sci 107(2):138–146. doi:10.1046/j.0909-8836.1999.eos107210.x

    Article  CAS  PubMed  Google Scholar 

  • Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42(12):821–826. doi:10.1111/j.2042-7158.1990.tb07033.x

    Article  CAS  PubMed  Google Scholar 

  • Jani P, McCarthy D, Florence A (1994) Titanium dioxide (rutile) particles uptake from the rat GI tract and translocation to the systemic organs after oral administration. Int J Pharm 105:157–168. doi:10.1016/0378-5173(94)90461-8

    Article  CAS  Google Scholar 

  • Jantratid E, Janssen N, Reppas C, Dressman JB (2008) Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res 25(7):1663–1676. doi:10.1007/s11095-008-9569-4

    Article  CAS  PubMed  Google Scholar 

  • Jantratid E, De Maio V, Ronda E, Mattavelli V, Vertzoni M, Dressman JB (2009) Application of biorelevant dissolution tests to the prediction of in vivo performance of diclofenac sodium from an oral modified-release pellet dosage form. Eur J Pharm Sci 37(3–4):434–441. doi:10.1016/j.ejps.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  • Johansson ME (2014) Mucus layers in inflammatory bowel disease. Inflamm Bowel Dis 20(11):2124–2131. doi:10.1097/MIB.0000000000000117

    Article  PubMed  Google Scholar 

  • Kalgaonkar S, Lonnerdal B (2009) Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. J Nutr Biochem 20(4):304–311. doi:10.1016/j.jnutbio.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  • Kararli TT (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16(5):351–380. doi:10.1002/bdd.2510160502

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Owen R (2005) Structure and function of intestinal mucosal epithelium. In: Mestecky J, Lamm M, Strober W, Bieenstock J, McGhee J, Mayer L (eds) Mucosal immunol. Elsevier, Burlington, pp 131–152

    Chapter  Google Scholar 

  • Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277(5328):949–952. doi:10.1126/science.277.5328.949

    Article  CAS  PubMed  Google Scholar 

  • Kerss S, Allen A, Garner A (1982) A simple method for measuring thickness of the mucus gel layer adherent to rat, frog and human gastric mucosa: influence of feeding, prostaglandin. N-acetylcysteine and other agents. Clin Sci (Lond) 63(2):187–195

    Article  CAS  Google Scholar 

  • Kietzmann M, Lubach D, Heeren HJ (1990) The mouse epidermis as a model in skin pharmacology: influence of age and sex on epidermal metabolic reactions and their circadian rhythms. Lab Anim 24(4):321–327. doi:10.1258/002367790780865921

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Ingber DE (2013) Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb) 5(9):1130–1140. doi:10.1039/c3ib40126j

    Article  CAS  Google Scholar 

  • Kim MS, Wang YY, Lai SK (2012) Part 2 macro barriers: journey to the tumor. mucosal barriers to drug- and gene-loaded nanoparticles. In: Serda R (ed) Mass transport of nanocarriers. Pan Stanford Publishing, Singapore, pp 97–135

    Google Scholar 

  • Kleiveland C (2015) Co-culture Caco-2/immune cells. In: Verhoeckx K, Cotter P, López-Expósito I et al (eds) The impact of food bioactives on health: in vitro and ex vivo models. Springer International Publishing, New York, pp 197–205

  • Koeneman BA, Zhang Y, Westerhoff P, Chen Y, Crittenden JC, Capco DG (2010) Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol 26(3):225–238. doi:10.1007/s10565-009-9132-z

    Article  CAS  PubMed  Google Scholar 

  • Laffleur F, Hintzen F, Shahnaz G, Rahmat D, Leithner K, Bernkop-Schnurch A (2013) Development and in vitro evaluation of slippery nanoparticles for enhanced diffusion through native mucus. Nanomed Nanotech Biol Med. doi:10.2217/nnm.13.26

  • Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M (2015) Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol 72(2):310–322. doi:10.1016/j.yrtph.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  • Larese F, Gianpietro A, Venier M, Maina G, Renzi N (2007) In vitro percutaneous absorption of metal compounds. Toxicol Lett 170(1):49–56. doi:10.1016/j.toxlet.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  • Larsen P, Christensen F, Jensen K, Brinch A, Mikkelsen S (2015) Exposure assessment of nanomaterials in consumer products. Danish Environmental Protection Agency Environmental Project No. 1636

  • Lawrence JN (1997) Electrical resistance and tritiated water permeability as indicators of barrier integrity of in vitro human skin. Toxicol Vitro 11(3):241–249

    Article  CAS  Google Scholar 

  • Lenfant C (2000) Discovery of endogenous surfactant and overview of its metabolism and actions. In: Notter R (ed) Lung surfactants, basic science and clinical applications, vol 149. Marcel Dekker Inc, New York

    Google Scholar 

  • Leonard F, Collnot EM, Lehr CM (2010) A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol Pharm 7(6):2103–2119. doi:10.1021/mp1000795

    Article  CAS  PubMed  Google Scholar 

  • Li N, Wang D, Sui Z et al (2013) Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Tissue Eng Part C Methods 19(9):708–719. doi:10.1089/ten.TEC.2012.0463

    Article  CAS  PubMed  Google Scholar 

  • Lomer MC, Thompson RP, Commisso J, Keen CL, Powell JJ (2000) Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst 125(12):2339–2343. doi:10.1039/B006285P

    Article  CAS  PubMed  Google Scholar 

  • Lomer MC, Hutchinson C, Volkert S et al (2004) Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr 92(6):947–955. doi:10.1079/BJN20041276

    Article  CAS  PubMed  Google Scholar 

  • Mahler GJ, Shuler ML, Glahn RP (2009) Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem 20(7):494–502. doi:10.1016/j.jnutbio.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  • Mahler GJ, Esch MB, Tako E et al (2012) Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol 7(4):264–271. doi:10.1038/nnano.2012.3

    Article  CAS  PubMed  Google Scholar 

  • Marques M, Loebenberg R, Almukainzi M (2011) Simulated biological fluids with possible application in dissolution testing. Dissolution Technol 15–28. doi:10.14227/DT180311P15

  • Martirosyan A, Polet M, Bazes A, Sergent T, Schneider Y (2012) Food nanoparticles and intestinal inflammation: a real risk? In: Szabo I (ed) Inflammatory bowel disease. InTech

  • Maschmeyer I, Lorenz AK, Schimek K et al (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15(12):2688–2699. doi:10.1039/c5lc00392j

    Article  CAS  PubMed  Google Scholar 

  • McGrath J, Uitto J (2016) Structure and function of the skin. In: Griffith C, Barker J, Bleiker T, Chalmers R, Creamer D (eds) Rook’s textbook of dermatology. Wiley, Chichester, pp 2.1–2.48

  • Minekus M, Smeets-Peeters M, Bernalier A et al (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53(1):108–114

    Article  CAS  PubMed  Google Scholar 

  • Mountfield RJ, Senepin S, Schleimer M, Walter I, Bittner B (2000) Potential inhibitory effects of formulation ingredients on intestinal cytochrome P450. Int J Pharm 211(1–2):89–92. doi:10.1016/S0378-5173(00)00586-X

    Article  CAS  PubMed  Google Scholar 

  • Mwilu SK, El Badawy AM, Bradham K et al (2013) Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry. Sci Total Environ 447:90–98. doi:10.1016/j.scitotenv.2012.12.036

    Article  CAS  PubMed  Google Scholar 

  • National Research Council U (1977) Respiratory transport and absorption. In: National Academy of Science (ed) Ozone and other photochemical oxidants. Washington

  • Niazi S (2007) Drug delivery factors handbook of bioequivalence testing, vol 213. CRC Press, Taylor & Francis Group, Boca Raton, pp 47–86

    Google Scholar 

  • Nielsen HM, Rassing MR (2000) TR146 cells grown on filters as a model of human buccal epithelium: IV. Permeability of water, mannitol, testosterone and beta-adrenoceptor antagonists. Comparison to human, monkey and porcine buccal mucosa. Int J Pharm 194(2):155–167

    Article  CAS  PubMed  Google Scholar 

  • Nielsen HM, Verhoef JC, Ponec M, Rassing MR (1999) TR146 cells grown on filters as a model of human buccal epithelium: permeability of fluorescein isothiocyanate-labelled dextrans in the presence of sodium glycocholate. J Control Release 60(2–3):223–233

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G, Maynard A, Donaldson K et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsson B, Bondesson E, Borgström L et al (2011) Pulmonary drug metabolism, clearance, and absorption. In: Smyth H, Hickey A (eds) Controlled pulmonary drug delivery. Springer, New York, pp 21–50

    Chapter  Google Scholar 

  • Park K, Park EJ, Chun IK et al (2011) Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res 34(1):153–158. doi:10.1007/s12272-011-0118-z

    Article  CAS  PubMed  Google Scholar 

  • Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6(1):67–74. doi:10.1038/nrd2153

    Article  CAS  PubMed  Google Scholar 

  • Peace RM, Campbell J, Polo J, Crenshaw J, Russell L, Moeser A (2011) Spray-dried porcine plasma influences intestinal barrier function, inflammation, and diarrhea in weaned pigs. J Nutr 141(7):1312–1317. doi:10.3945/jn.110.136796

    Article  CAS  PubMed  Google Scholar 

  • Pelaseyed T, Bergstrom JH, Gustafsson JK et al (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8–20. doi:10.1111/imr.12182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109. doi:10.1007/s11051-012-1109-9

    Article  Google Scholar 

  • Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34(3):J226–J233. doi:10.1016/j.jaut.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  • Pullan RD, Thomas GA, Rhodes M et al (1994) Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35(3):353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read NW, Barber DC, Levin RJ, Holdsworth CD (1977) Unstirred layer and kinetics of electrogenic glucose absorption in the human jejunum in situ. Gut 18(11):865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2(4):361–367. doi:10.1038/86373

    Article  CAS  PubMed  Google Scholar 

  • Rimoldi M, Chieppa M, Larghi P, Vulcano M, Allavena P, Rescigno M (2005) Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 106(8):2818–2826. doi:10.1182/blood-2004-11-4321

    Article  CAS  PubMed  Google Scholar 

  • Rincker MJ, Hill GM, Link JE, Meyer AM, Rowntree JE (2005) Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs. J Anim Sci 83(12):2762–2774

    Article  CAS  PubMed  Google Scholar 

  • Robertson K, Rees JL (2010) Variation in epidermal morphology in human skin at different body sites as measured by reflectance confocal microscopy. Acta Derm Venereol 90(4):368–373. doi:10.2340/00015555-0875

    Article  PubMed  Google Scholar 

  • Roblegg E, Fröhlich E, Meindl C, Teubl B, Zaversky M, Zimmer A (2012) Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology 6:399–413. doi:10.3109/17435390.2011.580863

    Article  CAS  PubMed  Google Scholar 

  • Rogers KR, Bradham K, Tolaymat T et al (2012) Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid. Sci Total Environ 420:334–339. doi:10.1016/j.scitotenv.2012.01.044

    Article  CAS  PubMed  Google Scholar 

  • Rojanasakul Y, Wang LY, Bhat M, Glover DD, Malanga CJ, Ma JK (1992) The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res 9(8):1029–1034. doi:10.1023/A:1015802427428

    Article  CAS  PubMed  Google Scholar 

  • Rupniak HT, Rowlatt C, Lane EB et al (1985) Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck. J Natl Cancer Inst 75(4):621–635. doi:10.1093/jnci/75.4.621

    CAS  PubMed  Google Scholar 

  • Sakolish CM, Esch MB, Hickman JJ, Shuler ML, Mahler GJ (2016) Modeling barrier tissues in vitro: methods, achievements, and challenges. EBioMedicine 5:30–39. doi:10.1016/j.ebiom.2016.02.023

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandzen B, Blom H, Dahlgren S (1988) Gastric mucus gel layer thickness measured by direct light microscopy. An experimental study in the rat. Scand J Gastroenterol 23(10):1160–1164. doi:10.3109/00365528809090185

    Article  CAS  PubMed  Google Scholar 

  • Schimpel C, Teubl B, Absenger M et al (2014) Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol Pharm 11(3):808–818. doi:10.1021/mp400507g

    Article  CAS  PubMed  Google Scholar 

  • Schimpel C, Rinner B, Absenger-Novak M et al (2015) A novel in vitro model for studying nanoparticle interactions with the small intestine. EURO-NanoTox Lett 17/12/2015:ahead of print

  • Schlage WK, Iskandar AR, Kostadinova R et al (2014) In vitro systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures. Toxicol Mech Methods 24(7):470–487. doi:10.3109/15376516.2014.943441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scientific Committee on Toxicity EatEC (2003) Opinion on the results of the Risk Assessment of: Zinc metal (CAS No. 7440-66-6), Zinc chloride (CAS No. 7646-85-7), Zinc sulphate (CAS No. 7733-02-0), Zinc distearate (CAS No. 557-05-1, 9105-01-3), Zinc phosphate (CAS No. 779-90-0), Zinc oxide (CAS No. 1314-13-2) Human Health Part. Adopted by the CSTEE during the 39th plenary meeting of 10 September 2003

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15. doi:10.1186/1743-8977-10-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söderholm J, Perdue M (2006) Effect of stress in intestinal mucosa function. In: Johnson L (ed) Physiology of the gastrointestinal tract. Elsevier, Burlington, pp 765–780

    Google Scholar 

  • Song Y, Li X, Du X (2009) Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34(3):559–567. doi:10.1183/09031936.00178308

    Article  CAS  PubMed  Google Scholar 

  • Squier CA, Johnson NW (1975) Permeability of oral mucosa. Br Med Bull 31(2):169–175

    CAS  PubMed  Google Scholar 

  • Squier CA, Wertz PW (1996) Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone M (ed) Oral mucosal drug delivery, vol 74. Marcel Dekker, New York

    Google Scholar 

  • Szentkuti L, Lorenz K (1995) The thickness of the mucus layer in different segments of the rat intestine. Histochem J 27(6):466–472

    Article  CAS  PubMed  Google Scholar 

  • Tak YK, Pal S, Naoghare PK, Rangasamy S, Song JM (2015) Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci Rep 5:16908. doi:10.1038/srep16908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannock G (1992) Lactic microflora of pigs, mice and rats. In: Wood B (ed) The lactic acid bacteria. The Lactic Acid Bacteria in Health & Disease, vol 1. Elsevier Science Publishers Ltd, Barking, pp 21–48

    Google Scholar 

  • Tay C, Fang W, Setyawati M et al (2014) Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl Mater Interfaces 6(9):6248–6256. doi:10.1021/am501266a

    Article  CAS  PubMed  Google Scholar 

  • Teubl BJ, Meindl C, Eitzlmayr A, Zimmer A, Fröhlich E, Roblegg E (2012) In-vitro permeability of neutral polystyrene particles via buccal mucosa. Small 9(9):457–466. doi:10.1002/smll.201201789

    PubMed  Google Scholar 

  • Teubl BJ, Absenger M, Fröhlich E, Leitinger G, Zimmer A, Roblegg E (2013) The oral cavity as a biological barrier system: design of an advanced buccal in vitro permeability model. Eur J Pharm Biopharm 84(2):386–393. doi:10.1016/j.ejpb.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  • Teubl BJ, Schimpel C, Leitinger G et al (2015) Interactions between nano-TiO and the oral cavity: impact of nanomaterial surface hydrophilicity/hydrophobicity. J Hazard Mater 286C:298–305. doi:10.1016/j.jhazmat.2014.12.064

    Article  CAS  Google Scholar 

  • Thorley AJ, Ruenraroengsak P, Potter TE, Tetley TD (2014) Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium. ACS Nano 8(11):11778–11789. doi:10.1021/nn505399e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torricelli AA, Novaes P, Matsuda M, Alves MR, Monteiro ML (2011) Ocular surface adverse effects of ambient levels of air pollution. Arquivos Bras Oftalmol 74(5):377–381. doi:10.1590/S0004-27492011000500016

    Article  Google Scholar 

  • Treuting P, Valasek M, Dintzis S (2012) Upper gastrointestinal tract. In: Treuting P, Dintzis S (eds) Comparative anatomy and histology: a mouse and human atlas. Elsevier, London, pp 154–176

    Google Scholar 

  • Varum FJ, Veiga F, Sousa JS, Basit AW (2012) Mucus thickness in the gastrointestinal tract of laboratory animals. J Pharm Pharmacol 64(2):218–227. doi:10.1111/j.2042-7158.2011.01399.x

    Article  CAS  PubMed  Google Scholar 

  • Veranth JM (2008) In vitro models for nanoparticle toxicology. In: Grassian VH (ed) Nanoscience and nanotechnology: environmenal and health impacts. Wiley, Hoboken, pp 261–286

    Chapter  Google Scholar 

  • Vertzoni M, Dressman J, Butler J, Hempenstall J, Reppas C (2005) Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur J Pharm Biopharm 60(3):413–417. doi:10.1016/j.ejpb.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  • Vertzoni M, Diakidou A, Chatzilias M et al (2010) Biorelevant media to simulate fluids in the ascending colon of humans and their usefulness in predicting intracolonic drug solubility. Pharm Res 27(10):2187–2196. doi:10.1007/s11095-010-0223-6

    Article  CAS  PubMed  Google Scholar 

  • von Hayek H (1960) The human lung. Hafner Publishing, New York

    Google Scholar 

  • Walczak AP, Fokkink R, Peters R et al (2013) Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 7(7):1198–1210. doi:10.3109/17435390.2012.726382

    Article  CAS  PubMed  Google Scholar 

  • Walczak AP, Kramer E, Hendriksen PJ et al (2015) Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Nanotoxicology 9(4):453–461. doi:10.3109/17435390.2014.944599

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou G, Chen C et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185. doi:10.1016/j.toxlet.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  • Wauthoz N, Amighi K (2015) Formulation strategies for pulmonary delivery of poorly soluble drugs. In: Nokhodchi A, Martin G (eds) Pulmonary drug delivery advances and challenges. Wiley, Chichester

    Google Scholar 

  • Weibel E (1980) Design and structure of the human lung. In: Fishman A (ed) Pulmonary diseases and disorders. McGraw-Hill, New York, pp 224–271

    Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250. doi:10.1021/es204168d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerhout J, Wortelboer H, Verhoeckx K (2015) Ussing chamber. In: Verhoeckx K, Cotter P, López-Expósito I et al (eds) The impact of food bio-actives on gut health: in vitro and ex vivo models. Springer, Berlin, pp 263–273

    Google Scholar 

  • Whitton JT, Everall JD (1973) The thickness of the epidermis. Br J Dermatol 89(5):467–476. doi:10.1111/j.1365-2133.1973.tb03007.x

    Article  CAS  PubMed  Google Scholar 

  • Wick P, Malek A, Manser P et al (2010) Barrier capacity of human placenta for nanosized materials. Environ Health Perspect 118(3):432–436. doi:10.1289/ehp.0901200

    Article  CAS  PubMed  Google Scholar 

  • Wikman-Larhed A, Artursson P (1995) Co-cultures of human intestinal goblet (HT29-H) and absorptive (Caco-2) cells for studies of drug and peptide absorption. Eur J Pharm Sci 3:171–183. doi:10.1016/0928-0987(95)00007-Z

    Article  CAS  Google Scholar 

  • Yokel RA, Macphail RC (2011) Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol 6:7. doi:10.1186/1745-6673-6-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonore Fröhlich.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröhlich, E., Roblegg, E. Oral uptake of nanoparticles: human relevance and the role of in vitro systems. Arch Toxicol 90, 2297–2314 (2016). https://doi.org/10.1007/s00204-016-1765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1765-0

Keywords

Navigation