Skip to main content
Log in

Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin

  • Biologics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The pathogenic bacteria Clostridium botulinum and Bacillus anthracis produce the binary protein toxins C2 and lethal toxin (LT), respectively. These toxins consist of a binding/transport (B7) component that delivers the separate enzyme (A) component into the cytosol of target cells where it modifies its specific substrate and causes cell death. The B7 components of C2 toxin and LT, C2IIa and PA63, respectively, are ring-shaped heptamers that bind to their cellular receptors and form complexes with their A components C2I and lethal factor (LF), respectively. After receptor-mediated endocytosis of the toxin complexes, C2IIa and PA63 insert into the membranes of acidified endosomes and form trans-membrane pores through which C2I and LF translocate across endosomal membranes into the cytosol. C2IIa and PA63 also form channels in planar bilayer membranes, and we used this approach earlier to identify chloroquine as a potent blocker of C2IIa and PA63 pores. Here, a series of chloroquine derivatives was investigated to identify more efficient toxin inhibitors with less toxic side effects. Chloroquine, primaquine, quinacrine, and fluphenazine blocked C2IIa and PA63 pores in planar lipid bilayers and in membranes of living epithelial cells and macrophages, thereby preventing the pH-dependent membrane transport of the A components into the cytosol and protecting cells from intoxication with C2 toxin and LT. These potent inhibitors of toxin entry underline the central role of the translocation pores for cellular uptake of binary bacterial toxins and as relevant drug targets, and might be lead compounds for novel pharmacological strategies against severe enteric diseases and anthrax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrami L, Lindsay M, Parton RG, Leppla SH, van der Goot FG (2004) Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol 166:645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  CAS  PubMed  Google Scholar 

  • Bachmeyer C, Benz R, Barth H, Aktories K, Gilbert M, Popoff MR (2001) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function by chloroquine and related compounds in vitro and intoxification in vivo. FASEB J 15:1658–1660

    CAS  PubMed  Google Scholar 

  • Bachmeyer C, Orlik F, Barth H, Aktories K, Benz R (2003) Mechanism of C2-toxin inhibition by fluphenazine and related compounds: investigation of their binding kinetics to the C2II-channel using the current noise analysis. J Mol Biol 333:527–540

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K (2011) New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin. Eur J Cell Biol 90:944–950

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Hofmann F, Olenik C, Just I, Aktories K (1998) The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect Immun 66:1364–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barth H, Blöcker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275:18704–18711

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Roebling R, Fritz M, Aktories K (2002) The binary Clostridium botulinum C2 toxin as a protein delivery system: identification of the minimal protein region necessary for interaction of toxin components. J Biol Chem 277:5074–5081

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beitzinger C, Stefani C, Kronhardt A, Rolando M, Flatau G, Lemichez E, Benz R (2012) Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA). PLoS ONE 7:e46964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beitzinger C, Bronnhuber A, Duscha K, Riedl Z, Huber-Lang M, Benz R, Hajós G, Barth H (2013) Designed azolopyridinium salts block protective antigen pores in vitro and protect cells from anthrax toxin. PLoS ONE 8:e66099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benz R, Cros D (1978) Influence of sterols on ion transport through lipid bilayer membranes. Biochim Biophys Acta 506:265–280

    Article  CAS  PubMed  Google Scholar 

  • Benz R, Janko K, Boos W, Läuger P (1987a) Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta 511:305–319

    Article  Google Scholar 

  • Benz R, Schmid A, Vos-Scheperkeuter GH (1987b) Mechanism of sugar transport through the sugar-specific LamB channel of Escherichia coli outer membrane. J Membr Biol 100:21–29

    Article  CAS  PubMed  Google Scholar 

  • Bezrukov SM, Nestorovich EM (2016) Inhibiting bacterial toxins by channel blockage. Pathog Dis. doi:10.1093/femspd/ftv113

    PubMed  Google Scholar 

  • Blaustein RO, Lea EJ, Finkelstein A (1990) Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. Single-channel analysis. J Gen Physiol 96:921–942

    Article  CAS  PubMed  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci USA 86:2209–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blöcker D, Barth H, Maier E, Benz R, Barbieri JT, Aktories K (2000) The C terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding. Infect Immun 68:4566–4573

    Article  PubMed  PubMed Central  Google Scholar 

  • Blöcker D, Bachmeyer C, Benz R, Aktories K, Barth H (2003a) Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. Biochemistry 42:5368–5377

    Article  PubMed  Google Scholar 

  • Blöcker D, Pohlmann K, Haug G, Bachmeyer C, Benz R, Aktories K, Barth H (2003b) Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. J Biol Chem 278:37360–37367

    Article  PubMed  Google Scholar 

  • Bronnhuber A, Maier E, Riedl Z, Hajós G, Benz R, Barth H (2014) Inhibitions of the translocation pore of Clostridium botulinum C2 toxin by tailored azolopyridinium salts protects human cells from intoxication. Toxicology 316:25–33

    Article  CAS  PubMed  Google Scholar 

  • Considine RV, Simpson LL (1991) Cellular and molecular actions of binary toxins possessing ADP-ribosyltransferase activity. Toxicon 29:913–936

    Article  CAS  PubMed  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Vande Woude GF (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734–737

    Article  CAS  PubMed  Google Scholar 

  • Förstner P, Bayer F, Kalu N, Felsen S, Förtsch C, Aloufi A, Ng DY, Weil T, Nestorovich EM, Barth H (2014) Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors. Biomacromolecules 15:2461–2474

    Article  PubMed  PubMed Central  Google Scholar 

  • Geric B, Rupnik M, Gerding DN, Grabnar M, Johnson S (2004) Distribution of Clostridium difficile variant toxinotypes and strains with binary toxin genes among clinical isolates in an American hospital. J Med Microbiol 53:887–894

    Article  CAS  PubMed  Google Scholar 

  • Goncalves C, Decre D, Barbut F, Burghoffer B, Petit JC (2004) Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile. J Clin Microbiol 42:1933–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haug G, Wilde C, Leemhuis J, Meyer DK, Aktories K, Barth H (2003) Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Biochemistry 42:15284–15291

    Article  CAS  PubMed  Google Scholar 

  • Heine K, Pust S, Enzenmüller S, Barth H (2008) ADP-ribosylation of actin by Clostridium botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death. Infect Immun 76:4600–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinlen L, Ballard JD (2010) Clostridium difficile infection. Am J Med Sci 340:247–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellmich KA, Levinsohn JL, Fattah R, Newman ZL, Maier N, Sastalla I, Liu S, Leppla SH, Moayeri M (2012) Anthrax lethal factor cleaves mouse Nlrp1b in both toxin-sensitive and toxin-resistant macrophages. PLoS ONE 7:e49741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Pentelute BL, Collier RJ, Zhou ZH (2015) Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521:545–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karginov VA, Nestorovich EM, Moayeri M, Leppla SH, Bezrukov SM (2005) Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc Natl Acad Sci USA 102:15075–15080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kintzer AF, Sterling HJ, Tang II, Williams ER, Krantz BA (2010) Anthrax toxin receptor drives protective antigen oligomerization and stabilizes the heptameric and octameric oligomer by a similar mechanism. PLoS ONE 5:e13888

    Article  PubMed  PubMed Central  Google Scholar 

  • Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR (2002) Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem 277:6143–6152

    Article  CAS  PubMed  Google Scholar 

  • Knapp O, Maier E, Waltenberger E, Mazuet C, Benz R, Popoff MR (2015) Residues involved in the pore-forming activity of the Clostridium perfringens iota toxin. Cell Microbiol 17:288–302

    Article  CAS  PubMed  Google Scholar 

  • Krantz BA, Melnyk RA, Zhang S, Juris SJ, Lacy DB, Wu Z, Finkelstein A, Collier RJ (2005) A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309:777–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronhardt A, Rolando M, Beitzinger C, Stefani C, Leuber M, Flatau G, Popoff MR, Benz R, Lemichez E (2011) Cross-reactivity of anthrax and C2 toxin: protective antigen promotes the uptake of botulinum C2I toxin into human endothelial cells. PLoS ONE 6:e23133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP (2014) Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J Infect Dis 209:83–86

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Neumeyer T, Sun J, Collier RJ, Benz R, Aktories K (2008) Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin. Biochemistry 47:8406–8413

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Ernst K, Lee H, Papatheodorou P, Schwan C, Barth H, Aktories K (2014) The chaperone Hsp90 and PPIases of the cyclophilin and FKBP families facilitate membrane translocation of Photorhabdus luminescens ADP-ribosyltransferases. Cell Microbiol 16:490–503

    Article  CAS  PubMed  Google Scholar 

  • Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8:e1002638

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin H, Willey B, Low DE, Staempfli HR, McGeer A, Boerlin P, Mulvey M, Weese JS (2008) Characterization of Clostridium difficile strains isolated from patients in Ontario, Canada, from 2004 to 2006. J Clin Microbiol 46:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald LC, Killgore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP, Johnson S, Gerding DN (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353:2433–2441

    Article  CAS  PubMed  Google Scholar 

  • Milne JC, Blanke SR, Hanna PC, Collier RJ (1995) Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus. Mol Microbiol 15:661–666

    Article  CAS  PubMed  Google Scholar 

  • Moayeri M, Leppla SH, Vrentas C, Pomerantsev AP, Liu S (2015) Anthrax pathogenesis. Annu Rev Microbiol 69:185–208

    Article  CAS  PubMed  Google Scholar 

  • Nestorovich EM, Karginov VA, Popoff MR, Bezrukov SM, Barth H (2011) Tailored ß-cyclodextrin blocks the translocation pores of binary exotoxins from C. botulinum and C. perfringens and protects cells from intoxication. PLoS ONE 6:e23927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumeyer T, Tonello F, Dal Molin F, Schiffler B, Benz R (2006a) Anthrax edema factor, voltage-dependent binding to the protective antigen ion channel and comparison to LF binding. J Biol Chem 281:32335–32343

    Article  CAS  PubMed  Google Scholar 

  • Neumeyer T, Tonello F, Dal Molin F, Schiffler B, Orlik F, Benz R (2006b) Anthrax lethal factor (LF) mediated block of the anthrax protective antigen (PA) ion channel: effect of ionic strength and voltage. Biochemistry 45:3060–3068

    Article  CAS  PubMed  Google Scholar 

  • Neumeyer T, Schiffler B, Maier E, Lang AE, Aktories K, Benz R (2008) Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel. J Biol Chem 283:3904–3914

    Article  CAS  PubMed  Google Scholar 

  • Ohishi I, Tsuyama S (1986) ADP-ribosylation of nonmuscle actin with component I of C2 toxin. Biochem Biophys Res Commun 136:802–806

    Article  CAS  PubMed  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlik F, Schiffler B, Benz R (2005) Anthrax toxin protective antigen: inhibition of channel function by chloroquine and related compounds and study of binding kinetics using the current noise analysis. Biophys J 88:1715–1724

    Article  CAS  PubMed  Google Scholar 

  • Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M, Petosa C, Bienkowska J, Lacy DB, Collier RJ, Park S, Leppla SH, Hanna P, Liddington RC (2001) Crystal structure of the anthrax lethal factor. Nature 414:229–233

    Article  CAS  PubMed  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    Article  CAS  PubMed  Google Scholar 

  • Roeder M, Nestorovich EM, Karginov VA, Schwan C, Aktories K, Barth H (2014) Tailored cyclodextrin pore blocker protects mammalian cells from clostridium difficile binary toxin CDT. Toxins (Basel) 6:2097–2104

    Article  CAS  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364:705–715

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Benz R, Just I, Aktories K (1994) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective channels and inhibition of channel function by chloroquine. J Biol Chem 269:16706–16711

    CAS  PubMed  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic beta/gamma-actin in arginine 177. J Biol Chem 263:696–700

    CAS  PubMed  Google Scholar 

  • Vitale G, Bernardi L, Napolitani G, Mock M, Montecucco C (2000) Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J 352:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    CAS  PubMed  Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245

    CAS  PubMed  Google Scholar 

  • Young JA, Collier RJ (2007) Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Finkelstein A, Collier RJ (2004a) Evidence that translocation of anthrax toxin’s lethal factor is initiated by entry of its N terminus into the protective antigen channel. Proc Natl Acad Sci USA 101:16756–16761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Udho E, Wu Z, Collier RJ, Finkelstein A (2004b) Protein translocation through anthrax toxin channels formed in planar lipid bilayers. Biophys J 87:3842–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Milne JC, Collier RJ (1995) Effect of anthrax toxin’s lethal factor on ion channels formed by the protective antigen. J Biol Chem 270:18626–18630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

LF and PA63 were kindly provided by Dr. R. John Collier, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, USA. The work in the Barth group was supported by the German Research Foundation (BA 2087/2-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland Benz or Holger Barth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreidler, AM., Benz, R. & Barth, H. Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Arch Toxicol 91, 1431–1445 (2017). https://doi.org/10.1007/s00204-016-1716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1716-9

Keywords

Navigation