Skip to main content
Log in

Characterization of chemical-induced sterile inflammation in vitro: application of the model compound ketoconazole in a human hepatic co-culture system

  • Immunotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Liver injury as a result of a sterile inflammation is closely linked to the activation of immune cells, including macrophages, by damaged hepatocytes. This interaction between immune cells and hepatocytes is as yet not considered in any of the in vitro test systems applied during the generation of new drugs. Here, we established and characterized a novel in vitro co-culture model with two human cell lines, HepG2 and differentiated THP-1. Ketoconazole, an antifungal drug known for its hepatotoxicity, was used as a model compound in the testing of the co-culture. Single cultures of HepG2 and THP-1 cells were studied as controls. Different metabolism patterns of ketoconazole were observed for the single and co-culture incubations as well as for the different cell types. The main metabolite N-deacetyl ketoconazole was found in cell pellets, but not in supernatants of cell cultures. Global proteome analysis showed that the NRF2-mediated stress response and the CXCL8 (IL-8) pathway were induced by ketoconazole treatment under co-culture conditions. The upregulation and ketoconazole-induced secretion of several pro-inflammatory cytokines, including CXCL8, TNF-α and CCL3, was observed in the co-culture system only, but not in single cell cultures. Taking together, we provide evidence that the co-culture model applied might be suitable to serve as tool for the prediction of chemical-induced sterile inflammation in liver tissue in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

CCL3:

Chemokine (C–C-motif) ligand 3

CD54:

Cluster of differentiation 54

CXCL8:

C–X–C-motif ligand 8, interleukin 8

DAK:

N-deacetyl ketoconazole

GM-CSF:

Granulocyte macrophage colony-stimulating factor

HMGB1:

High-mobility group box 1

IL-1rα:

Interleukin 1 receptor-α

KTZ:

Ketoconazole

LC50 :

Half maximal toxic concentration

MIF:

Macrophage migration inhibitory factor

TNF-α:

Tumor necrosis factor-α

Serpin E1:

Serpin peptide inhibitor clade E (nexin, plasminogen activator inhibitor type 1)

References

  • Adams DH, Ju C, Ramaiah SK et al (2010) Mechanisms of immune-mediated liver injury. Toxicol Sci 115:307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Au JS, Navarro VJ, Rossi S (2011) Review article : drug-induced liver injury—its pathophysiology and evolving diagnostic tools. Aliment Pharmacol Ther 34:11–20

    Article  CAS  PubMed  Google Scholar 

  • Bass DA, Parce JW, Dechatelet LR et al (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917

    CAS  PubMed  Google Scholar 

  • Baxter JG, Brass C, Schentag JJ, Slaughter RL (1986) Pharmacokinetics of ketoconazole administered intravenously to dogs and orally as tablet and solution to humans and dogs. J Pharm Sci 75:443–447

    Article  CAS  PubMed  Google Scholar 

  • Blazka ME, Wilmer JL, Holladay SD et al (1995) Role of proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 133:43–52

    Article  CAS  PubMed  Google Scholar 

  • Bourdi M, Masubuchi Y, Reilly TP et al (2002a) Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 35:289–298

    Article  CAS  PubMed  Google Scholar 

  • Bourdi M, Reilly TP, Elkahloun AG et al (2002b) Macrophage migration inhibitory factor in drug-induced liver injury: a role in susceptibility and stress responsiveness. Biochem Biophys Res Commun 294:225–230

    Article  CAS  PubMed  Google Scholar 

  • Brenner C, Galluzzi L, Kepp O, Kroemer G (2013) Decoding cell death signals in liver inflammation. J Hepatol 59:583–594

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Vijay V, Shi Q et al (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16:697–703

    Article  PubMed  Google Scholar 

  • Dong Z, Wei H, Sun R, Tian Z (2007) The roles of innate immune cells in liver injury and regeneration. Cell Mol Immunol 4:241–252

    CAS  PubMed  Google Scholar 

  • Donnelly SC, Haslett C, Reid PT et al (1997) Regulatory role for macrophage migration inhibitory factor in acute respiratory distress syndrome. Nat Med 3:320–323

    Article  CAS  PubMed  Google Scholar 

  • Dragomir A-C, Laskin JD, Laskin DL (2011) Macrophage activation by factors released from acetaminophen-injured hepatocytes: potential role of HMGB1. Toxicol Appl Pharmacol 253:170–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dykens J, Will Y (2007) The significance of mitochondrial toxicity testing in drug development. Drug Discov Today 12:777–785

    Article  CAS  PubMed  Google Scholar 

  • Edling Y, Sivertsson LK, Butura A et al (2009) Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model. Toxicol Vitr 23:1387–1395

    Article  CAS  Google Scholar 

  • Fitch WL, Tran T, Young M et al (2009) Revisiting the metabolism of ketoconazole using accurate mass. Drug Metab Lett 3:191–198

    Article  CAS  PubMed  Google Scholar 

  • Grattagliano I, Bonfrate L, Diogo CV et al (2009) Biochemical mechanisms in drug-induced liver injury: certainties and doubts. World J Gastroenterol 15:4865–4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenblatt DJ (2014) The ketoconazole legacy. Clin Pharmacol Drug Dev 3:1–3

    Article  PubMed  Google Scholar 

  • Gupta AK, Daigle D, Foley KA (2015) Drug safety assessment of oral formulations of ketoconazole. Expert Opin Drug Saf 14:325–334

    Article  CAS  PubMed  Google Scholar 

  • Heel RC, Brogden RN, Carmine A et al (1982) Ketoconazole: a review of its therapeutic efficacy in superficial and systemic fungal infections. Drugs 23:1–36

    Article  CAS  PubMed  Google Scholar 

  • Herpers B, Wink S, Fredriksson L et al (2015) Activation of the Nrf2 response by intrinsic hepatotoxic drugs correlates with suppression of NF-κB activation and sensitizes toward TNFα-induced cytotoxicity. Arch Toxicol [Epub ahead of print]

  • Hitzler M, Bergert A, Luch A, Peiser M (2013) Evaluation of selected biomarkers for the detection of chemical sensitization in human skin: a comparative study applying THP-1, MUTZ-3 and primary dendritic cells in culture. Toxicol In Vitro 27:1659–1669

    Article  CAS  PubMed  Google Scholar 

  • Hoebe KH, Witkamp RF, Fink-Gremmels J et al (2001) Direct cell-to-cell contact between Kupffer cells and hepatocytes augments endotoxin-induced hepatic injury. Am J Physiol Gastrointest Liver Physiol 280:G720–G728

    CAS  PubMed  Google Scholar 

  • Hoeke H, Roeder S, Bertsche T et al (2015) Monitoring of drug intake during pregnancy by questionnaires and LC-MS/MS drug urine screening: evaluation of both monitoring methods. Drug Test Anal 7:695–702

    Article  CAS  PubMed  Google Scholar 

  • Hoofnagle JH, Serrano J, Knoben JE, Navarro VJ (2013) LiverTox: a website on drug-induced liver injury. Hepatology 57:873–874

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y-C, Colaizzi JL, Bierman RH et al (1986) Pharmacokinetics and dose proportionality of Ketoconazole in normal volunteers. Antimicrob Agents Chemother 206–210

  • Jaeschke H, Williams CD, Ramachandran A, Bajt ML (2012) Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 32:8–20

    Article  CAS  PubMed  Google Scholar 

  • Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4:489–499

    Article  CAS  PubMed  Google Scholar 

  • Kiorpelidou E, Foster B, Farrell J et al (2012) IL-8 release from human neutrophils cultured with pro-haptenic chemical sensitizers. Chem Res Toxicol 25:2054–2056

    Article  CAS  PubMed  Google Scholar 

  • Krenkel O, Mossanen JC, Tacke F (2014) Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg Nutr 3:331–343

    PubMed  PubMed Central  Google Scholar 

  • Liu SF, Ye X, Malik AB (1999) Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation 100:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Louis H, Van Laethem JL, Wu W et al (1998) Interleukin-10 controls neutrophilic infiltration, hepatocyte proliferation, and liver fibrosis induced by carbon tetrachloride in mice. Hepatology 28:1607–1615

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Nakamoto Y, Nemoto-Sasaki Y et al (2003) Potential interaction between CCR1 and its ligand, CCL3, induced by endogenously produced interleukin-1 in human hepatomas. Am J Pathol 162:1249–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques PE, Amaral SS, Pires DA et al (2012) Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56:1971–1982

    Article  CAS  PubMed  Google Scholar 

  • Marques PE, Oliveira AG, Pereira RV et al (2015) Hepatic DNA deposition drives drug-induced liver injury and inflammation in mice. Hepatology 61:348–360

    Article  CAS  PubMed  Google Scholar 

  • Masson MJ, Collins LA, Pohl LR (2010) The role of cytokines in the mechanism of adverse drug reactions. Handb Exp Pharmacol 195–231

  • Melino M, Gadd VL, Walker GV et al (2012) Macrophage secretory products induce an inflammatory phenotype in hepatocytes. World J Gastroenterol 18:1732–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickelson JK, Kukielka G, Bravenec JS et al (1995) Differential expression and release of CD54 induced by cytokines. Hepatology 2:866–875

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Navarro VJ, Barnhart H, Bonkovsky HL et al (2014) Liver injury from herbals and dietary supplements in the US Drug Induced Liver Injury Network. Hepatology 60:1399–1408

    Article  PubMed  PubMed Central  Google Scholar 

  • Pessayre D, Fromenty B, Berson A et al (2012) Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 44:34–87

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Raschi E, Poluzzi E, Koci A et al (2014) Assessing liver injury associated with antimycotics: concise literature review and clues from data mining of the FAERS database. World J Hepatol 6:601–612

    PubMed  PubMed Central  Google Scholar 

  • Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Tsui H-T, Poon RT-P et al (2003) Macrophage migration inhibitory factor: roles in regulating tumor cell migration and expression of angiogenic factors in hepatocellular carcinoma. Int J Cancer 107:22–29

    Article  CAS  PubMed  Google Scholar 

  • Ritz C, Streibig JC (2005) Bioassay Analysis Using R. J Stat Softw 12:1–22

    Article  Google Scholar 

  • Roberts RA, Ganey PE, Ju C et al (2007) Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol Sci 96:2–15

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Acosta D (1997a) N-deacetyl ketoconazole-induced hepatotoxicity culture system of rat hepatocytes. Toxicology 117:123–131

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Acosta D (1997b) Metabolism of ketoconazole and deacetylated ketoconazole by rat hepatic microsomes and flavin-containing monooxygenases. Drug Metab Dispos 25:772–777

    CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Miranda CL (2000) Isoform specificity of N-deacetyl ketoconazole by human and rabbit flavin-containing monooxygenases. Drug Metab Dispos 28:1083–1086

    CAS  PubMed  Google Scholar 

  • Roebuck KA, Finnegan A (1999) Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol 66:876–888

    CAS  PubMed  Google Scholar 

  • Salbach J, Kliemt S, Rauner M et al (2012) The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials 33:8418–8429

    Article  CAS  PubMed  Google Scholar 

  • Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steuerwald NM, Foureau DM, Norton HJ et al (2013) Profiles of serum cytokines in acute drug-induced liver injury and their prognostic significance. PLoS ONE 8:81974

    Article  Google Scholar 

  • Sugar AM, Alsip SG, Galgiani JN et al (1987) Pharmacology and toxicity of high-dose ketoconazole. Antimicrob Agents Chemother 31:1874–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson K, Maltby J, Fallowfield J et al (1998) Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology 28:1597–1606

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya S, Kobayashi Y, Goto Y et al (1982) Induction of maturation in cultured human monocytic leukemia cells by a Phorbol Diester. Cancer Res 42:1530–1536

    CAS  PubMed  Google Scholar 

  • Tukov FF, Maddox JF, Amacher DE et al (2006) Modeling inflammation-drug interactions in vitro: a rat Kupffer cell-hepatocyte coculture system. Toxicol In Vitro 20:1488–1499

    Article  CAS  PubMed  Google Scholar 

  • Wanninger J, Neumeier M, Weigert J et al (2009) Adiponectin-stimulated CXCL8 release in primary human hepatocytes is regulated by ERK1/ERK2, p38 MAPK, NF-kappaB, and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol 297:G611–G618

    Article  CAS  PubMed  Google Scholar 

  • Wissenbach DK, Meyer MR, Remane D et al (2011) Development of the first metabolite-based LC-MS(n) urine drug screening procedure-exemplified for antidepressants. Anal Bioanal Chem 400:79–88

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Liu J, Liu T et al (2010) Chemokine CCL3 facilitates the migration of hepatoma cells by changing the concentration intracellular Ca2+. Hepatol Res 40:424–431

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann HW, Seidler S, Gassler N et al (2011) Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS ONE 6:21381

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Barbara Gerding for excellent technical assistance and S. Weichenhain for discussions. The financial support of the BfR through intramural Grants SFP 1322-530 and 1329-529 is gratefully acknowledged. Florent Jouy and Scarlett Gebauer acknowledge network funding through Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE). We also acknowledge the ProVis platform in general and in particular Benjamin Scheer for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Wewering.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interests.

Additional information

Franziska Wewering, Florent Jouy and Dirk K. Wissenbach have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wewering, F., Jouy, F., Wissenbach, D.K. et al. Characterization of chemical-induced sterile inflammation in vitro: application of the model compound ketoconazole in a human hepatic co-culture system. Arch Toxicol 91, 799–810 (2017). https://doi.org/10.1007/s00204-016-1686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1686-y

Keywords

Navigation