Skip to main content

Advertisement

Log in

Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The developing brain is highly vulnerable to the adverse effects of chemicals, resulting in neurodevelopmental disorders in humans. Currently, animal experiments in the rat are the gold standard for developmental neurotoxicity (DNT) testing; however, these guideline studies are insufficient in terms of animal use, time and costs and bear the issue of species extrapolation. Therefore, the necessity for alternative methods that predict DNT of chemicals faster, cheaper and with a high predictivity for humans is internationally agreed on. In this respect, we developed an in vitro model for DNT key event screening, which is based on primary human and rat neural progenitor cells grown as neurospheres. They are able to mimic basic processes of early fetal brain development and enable an investigation of species differences between humans and rodents in corresponding cellular models. The goal of this study was to investigate to what extent human and rat neurospheres were able to correctly predict the DNT potential of a well-characterized training set of nine chemicals by investigating effects on progenitor cell proliferation, migration and neuronal differentiation in parallel to cell viability, and to compare these chemical responses between human and rat neurospheres. We demonstrate that (1) by correlating these human and rat in vitro results to existing in vivo data, human and rat neurospheres classified most compounds correctly and thus may serve as a valuable component of a modular DNT testing strategy and (2) human and rat neurospheres differed in their sensitivity to most chemicals, reflecting toxicodynamic species differences of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Alépée N, Bahinski T, Daneshian M et al (2014) State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 31(4):441–477

    PubMed  PubMed Central  Google Scholar 

  • Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741

    Article  CAS  PubMed  Google Scholar 

  • Ayuso-Sacido A, Moliterno JA, Kratovac S et al (2010) Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells. J Neurooncol 97(3):323–337

    Article  CAS  PubMed  Google Scholar 

  • Bal-Price AK, Coecke S, Costa L et al (2012) Advancing the science of developmental neurotoxicity (DNT): testing for better safety evaluation. Altex 29(2):202–215

    Article  PubMed  Google Scholar 

  • Bal-Price A, Crofton KM, Leist M et al (2015a) International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch Toxicol 89(2):269–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal-Price A, Crofton KM, Sachana M et al (2015b) Putative adverse outcome pathways relevant to neurotoxicity. Crit Rev Toxicol 45(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Bassanini S, Hallene K, Battaglia G et al (2007) Early cerebrovascular and parenchymal events following prenatal exposure to the putative neurotoxin methylazoxymethanol. Neurobiol dis 26(2):481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann J, Barenys M, Gassmann K, Fritsche E (2014) Comparative human and rat “neurosphere assay” for developmental neurotoxicity testing. Curr Protoc Toxicol 59:12.21.1–12.21.24

    Article  Google Scholar 

  • Bellanger M, Pichery C, Aerts D et al (2013) Economic benefits of methylmercury exposure control in Europe: monetary value of neurotoxicity prevention. Environ Health 12(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Bornhausen M, Müsch H, Greim H (1980) Operant behavior performance changes in rats after prenatal methylmercury exposure. Toxicol Appl Pharmacol 56(3):305–310

    Article  CAS  PubMed  Google Scholar 

  • Breier JM, Gassmann K, Kayser R et al (2010) Neural progenitor cells as models for high-throughput screens of developmental neurotoxicity: state of the science. Neurotoxicol Teratol 32(1):4–15

    Article  CAS  PubMed  Google Scholar 

  • Burbacher TM, Rodier PM, Weiss B (1990) Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol 12(3):191–202

    Article  CAS  PubMed  Google Scholar 

  • Burgess-Herbert SL, Euling SY (2013) Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: challenges, opportunities, and research needs. Toxicol Appl Pharmacol 271(3):372–385

    Article  CAS  PubMed  Google Scholar 

  • Castoldi AF, Coccini T, Ceccatelli S, Manzo L (2001) Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 55(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Cattabeni F, Di Luca M (1997) Developmental models of brain dysfunctions induced by targeted cellular ablations with methylazoxymethanol. Physiol Rev 77(1):199–215

    CAS  PubMed  Google Scholar 

  • Chen WJ, Bōdy RL, Mottet NK (1979) Some effects of continuous low-dose congenital exposure to methylmercury on organ growth in the rat fetus. Teratology 20(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Clancy B, Kersh B, Hyde J, Darlington RB, Anand K, Finlay BL (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5(1):79–94

    Article  PubMed  Google Scholar 

  • Coecke S, Goldberg AM, Allen S et al (2007) Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. Environ Health Perspect 115(6):924–931

    Article  PubMed  PubMed Central  Google Scholar 

  • Crofton KM, Mundy WR, Lein PJ et al (2011) Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. Altex 28(1):9–15

    PubMed  Google Scholar 

  • Croom EL, Shafer TJ, Evans MV et al (2015) Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: a case study of lindane-induced neurotoxicity. Toxicol Appl Pharmacol 283(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Dam K, Seidler F, Slotkin T (1998) Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Dev Brain Res 108(1):39–45

    Article  CAS  Google Scholar 

  • Daston GP, Chapin RE, Scialli AR et al (2010) A different approach to validating screening assays for developmental toxicity. Birth Defects Res B 89(6):526–530

    Article  CAS  Google Scholar 

  • De Groot DM, Hartgring S, Van de Horst L et al (2005) 2D and 3D assessment of neuropathology in rat brain after prenatal exposure to methylazoxymethanol, a model for developmental neurotoxicty. Reprod Toxicol 20(3):417–432

    Article  PubMed  Google Scholar 

  • Foti SB, Chou A, Moll AD, Roskams AJ (2013) HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain. Int J Dev Neurosci 31(6):434–447. doi:10.1016/j.ijdevneu.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  • Gassmann K, Abel J, Bothe H et al (2010) Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. Environ Health Perspect 118(1):1571–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann K, Baumann J, Giersiefer S et al (2012) Automated neurosphere sorting and plating by the COPAS large particle sorter is a suitable method for high-throughput 3D in vitro applications. Toxicol In Vitro 26(6):993–1000

    Article  CAS  PubMed  Google Scholar 

  • Go HS, Kim KC, Choi CS et al (2012) Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3β/β-catenin pathway. Neuropharmacology 63(6):1028–1041. doi:10.1016/j.neuropharm.2012.07.028

    Article  CAS  PubMed  Google Scholar 

  • Goldman LR, Koduru S (2000) Chemicals in the environment and developmental toxicity to children: a public health and policy perspective. Environ Health Perspect 108(Suppl 3):443

    Article  PubMed  PubMed Central  Google Scholar 

  • Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. The Lancet 368(9553):2167–2178

    Article  CAS  Google Scholar 

  • Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13(3):330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrill JA, Freudenrich TM, Robinette BL, Mundy WR (2011) Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth. Toxicol Appl Pharmacol 256(3):268–280

    Article  CAS  PubMed  Google Scholar 

  • Howard AS, Bucelli R, Jett DA, Bruun D, Yang D, Lein PJ (2005) Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures. Toxicol Appl Pharmacol 207(2):112–124

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y-Z, Wang K, Fang R, Zheng J (2010) Expression of aryl hydrocarbon receptor in human placentas and fetal tissues. J Histochem Cytochem 58(8):679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson M, Hammers S, Nilsson-Ehle I, Malmborg A-S, Wretlind B (1996) Concentrations of doxycycline and penicillin G in sera and cerebrospinal fluid of patients treated for neuroborreliosis. Antimicrob Agents Chemother 40(5):1104–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kisby G, Olivas A, Park T et al (2009) DNA repair modulates the vulnerability of the developing brain to alkylating agents. DNA Repair 8(3):400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstreuer NC, Yang J, Berg EL et al (2014) Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat Biotechnol 32(6):583–591

    Article  CAS  PubMed  Google Scholar 

  • Krewski D, Acosta D Jr, Andersen M et al (2010) Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B 13(2–4):51–138

    Article  CAS  Google Scholar 

  • Lein P, Silbergeld E, Locke P, Goldberg AM (2005) In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol 19(3):735–744

    Article  CAS  PubMed  Google Scholar 

  • Lein P, Locke P, Goldberg A (2007) Meeting report: alternatives for developmental neurotoxicity testing. Environ Health Perspect 115(5):764–768

    Article  PubMed  PubMed Central  Google Scholar 

  • Leist M, Hartung T (2013) Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch Toxicol 87(4):563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L’Episcopo F, Tirolo C, Testa N et al (2013) Aging-induced Nrf2-ARE pathway disruption in the subventricular zone drives neurogenic impairment in parkinsonian mice via PI3 K-Wnt/β-catenin dysregulation. J Neurosci 33(4):1462–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewandowski T, Ponce R, Charleston J, Hong S, Faustman E (2003) Effect of methylmercury on midbrain cell proliferation during organogenesis: potential cross-species differences and implications for risk assessment. Toxicol Sci 75(1):124–133

    Article  CAS  PubMed  Google Scholar 

  • Moors M, Cline JE, Abel J, Fritsche E (2007) ERK-dependent and-independent pathways trigger human neural progenitor cell migration. Toxicol Appl Pharmacol 221(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Moors M, Rockel TD, Abel J et al (2009) Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environ Health Perspect 117(7):1131–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NRC (2007) Toxicity testing in the 21st century: A vision and a strategy. National Academies Press, Washington

    Google Scholar 

  • OECD (2007) Test Guideline 426. OECD guideline for testing of chemicals. Developmental neurotoxicity study. In. http://www.oecd-ilibrary.org/docserver/download/9742601e.pdf?expires=1424270931&id=id&accname=guest&checksum=B19A872A2CCC50D706CB32B2E5687B48. Accessed 18 Feb 2015

  • Patlewicz G, Simon T, Rowlands JC, Budinsky RA, Becker RA (2015) Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes. Regul Toxicol Pharmacol 71(3):463–477

    Article  PubMed  Google Scholar 

  • Ponce RA, Kavanagh TJ, Mottet NK, Whittaker SG, Faustman EM (1994) Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol 127(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Rauh VA, Garfinkel R, Perera FP et al (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118(6):e1845–e1859

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodier PM (1995) Developing brain as a target of toxicity. Environ Health Perspect 103(Suppl 6):73

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotroff DM, Wetmore BA, Dix DJ et al (2010) Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. Toxicol Sci 117(2):348–358

    Article  CAS  PubMed  Google Scholar 

  • Rotroff DM, Martin MT, Dix DJ et al (2014) Predictive endocrine testing in the 21st century using in vitro assays of estrogen receptor signaling responses. Environ Sci Technol 48(15):8706–8716

    Article  CAS  PubMed  Google Scholar 

  • Schettler T (2001) Toxic threats to neurologic development of children. Environ Health Perspect 109(Suppl 6):813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidle T, Stephens M (2009) Bringing toxicology into the 21st century: a global call to action. Toxicol In Vitro 23(8):1576–1579

    Article  CAS  PubMed  Google Scholar 

  • Somel M, Liu X, Tang L et al (2011) MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol 9(12):e1001214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer PS, Kisby GE, Ludolph AC (1991) Slow toxins, biologic markers, and long-latency neurodegenerative disease in the western Pacific region. Neurology 41(5 Suppl 2):62–66

    Article  CAS  PubMed  Google Scholar 

  • Timchalk C, Poet TS, Kousba AA (2006) Age-dependent pharmacokinetic and pharmacodynamic response in preweanling rats following oral exposure to the organophosphorus insecticide chlorpyrifos. Toxicology 220(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Tollefsen KE, Scholz S, Cronin MT et al (2014) Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol 70(3):629–640

    Article  PubMed  Google Scholar 

  • USEPA (1998) Health Effects Test Guidelines: OPPTS 870.6300 Developmental neurotoxicity study. In. http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPPT-2009-0156-0042. Accessed 18 Feb 2015

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Howard A, Bruun D, Ajua-Alemanj M, Pickart C, Lein PJ (2008) Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase. Toxicol Appl Pharmacol 228(1):32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YE, Landback P, Vibranovski MD, Long M (2011) Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 9(10):e1001179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Ministry of Education and Research (BMBF Grants 0315522E and 16V0899). The authors thank Dr. Julia Tigges for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Fritsche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The animals used for NPC preparation were maintained in an accredited on-site testing facility according to the guideline provided by the Society for Laboratory Animals Science (GV-SOLAS). They were treated humanely and with regard for alleviation of suffering. NPC preparation was approved by the North Rhine-Westphalia State Environment Agency.

Additional information

Jenny Baumann and Kathrin Gassmann have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumann, J., Gassmann, K., Masjosthusmann, S. et al. Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 90, 1415–1427 (2016). https://doi.org/10.1007/s00204-015-1568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1568-8

Keywords

Navigation