Skip to main content
Log in

Pubertal exposure to di-(2-ethylhexyl)-phthalate inhibits G9a-mediated histone methylation during spermatogenesis in mice

  • Reproductive Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The increasing incidence of male reproductive impairments has been associated with di-(2-ethylhexyl)-phthalate (DEHP) exposure. However, mechanisms involved are lacking. We exposed 4-week-old male C57BL/6j mice to DEHP by gavage at 0, 125, 250 or 500 mg/kg body weight/day for 28 consecutive days. Our data showed that pubertal exposure to DEHP induces sperm count reduction as well as histological abnormalities in seminiferous epithelium and apoptosis of post-meiotic germ cells, and these effects are concomitant with reduction of testosterone levels and its steroidogenic gene expression. Moreover, the expressions of estrogen receptor ERβ and nuclear receptors Nr0b1, Nr0b2 are increased. The expression of Nr5a2 which is the inducer of steroidogenesis is significantly reduced. Furthermore, spermatogonial stem cell (SSC) self-renewal, differentiation and meiosis were significantly impaired, and the epigenetic regulator G9a-mediated histone methylation was decreased following DEHP exposure. Our results suggest that the DEHP-induced male reproductive impairments may depend on its estrogenic action on estrogen receptor and nuclear receptor, and involve inhibition of steroidogenesis, SSC self-renewal and meiosis, which may be attributed to the down-regulation of G9a-mediated histone methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson EL, Baltus AE, Roepers-Gajadien HL et al (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA 105(39):14976–14980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade AJ, Grande SW, Talsness CE et al (2006) A dose response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): reproductive effects on adult male offspring rats. Toxicology 228(1):85–97

    Article  CAS  PubMed  Google Scholar 

  • Baltus AE, Menke DB, Hu YC et al (2006) In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 38(12):1430–1434

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Rodriguez J (2009) Gammah2ax marks the main events of the spermatogenic process. Microsc Res Tech 72(11):823–832

    Article  CAS  PubMed  Google Scholar 

  • Bowles J, Koopman P (2007) Retinoic acid, meiosis and germ cell fate in mammals. Development 134(19):3401–3411

    Article  CAS  PubMed  Google Scholar 

  • Brower JV, Lim CH, Jorgensen M, Oh SP, Terada N (2009) Adenine nucleotide translocase 4 deficiency leads to early meiotic arrest of murine male germ cells. Reproduction 138(3):463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloud V, Chan YL, Grubb J, Budke B, Bishop DK (2012) Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337(6099):1222–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crackower MA, Kolas NK, Noguchi J et al (2003) Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science 300(5623):1291–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C (2003) Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 160(5):657–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Chami N, Ikhlef F, Kaszas K et al (2005) Androgen-dependent apoptosis in male germ cells is regulated through the proto-oncoprotein Cbl. J Cell Biol 171(4):651–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Eram MS, Bustos SP, Lima-Fernandes E et al (2014) Trimethylation of histone H3 lysine 36 by human methyltransferase PRDM9 protein. J Biol Chem 289(17):12177–12188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falender AE, Freiman RN, Geles KG et al (2005) Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev 19(7):794–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A et al (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4(4):497–508

    Article  CAS  PubMed  Google Scholar 

  • Green R, Hauser R, Calafat AM et al (2005) Use of di(2-ethylhexyl) phthalate-containing medical products and urinary levels of mono(2-ethylhexyl) phthalate in neonatal intensive care unit infants. Environ Health Perspect 113(9):1222–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guibert S, Weber M (2012) Epigenetics: erase for a new start. Nature 492(7429):363–364

    Article  CAS  PubMed  Google Scholar 

  • Guido C, Panza S, Santoro M et al (2012) Estrogen receptor beta (ERbeta) produces autophagy and necroptosis in human seminoma cell line through the binding of the Sp1 on the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) promoter gene. Cell Cycle 11(15):2911–2921

    Article  CAS  PubMed  Google Scholar 

  • Handel MA, Schimenti JC (2010) Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11(2):124–136

    CAS  PubMed  Google Scholar 

  • Hasegawa T, Zhao L, Caron KM et al (2000) Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrinol 14(9):1462–1471

    Article  CAS  PubMed  Google Scholar 

  • Hobbs RM, Seandel M, Falciatori I, Rafii S, Pandolfi PP (2010) Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 142(3):468–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogarth CA, Griswold MD (2010) The key role of vitamin A in spermatogenesis. J Clin Invest 120(4):956–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang LP, Lee CC, Hsu PC, Shih TS (2011) The association between semen quality in workers and the concentration of di(2-ethylhexyl) phthalate in polyvinyl chloride pellet plant air. Fertil Steril 96(1):90–94

    Article  CAS  PubMed  Google Scholar 

  • Joensen UN, Frederiksen H, Jensen MB et al (2012) Phthalate excretion pattern and testicular function: a study of 881 healthy Danish men. Environ Health Perspect 120(10):1397–1403

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson KJ, McDowell EN, Viereck MP, Xia JQ (2011) Species-specific dibutyl phthalate fetal testis endocrine disruption correlates with inhibition of SREBP2-dependent gene expression pathways. Toxicol Sci 120(2):460–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurewicz J, Radwan M, Sobala W et al (2013) Human urinary phthalate metabolites level and main semen parameters, sperm chromatin structure, sperm aneuploidy and reproductive hormones. Reprod Toxicol 42:232–241

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Namekawa SH, Niswander LM et al (2007) A mammal-specific Doublesex homolog associates with male sex chromatin and is required for male meiosis. PLoS Genet 3(4):e62

    Article  PubMed  PubMed Central  Google Scholar 

  • Latchoumycandane C, Chitra KC, Mathur PP (2002) The effect of methoxychlor on the epididymal antioxidant system of adult rats. Reprod Toxicol 16(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Ahn MY, Kim HS et al (2011) Role of phospholipase D in regulation of testicular Leydig cell hyperplasia in Sprague-Dawley rats treated with di(2-ethylhexyl) phthalate. Arch Toxicol 85(8):975–985

    Article  CAS  PubMed  Google Scholar 

  • Legler J, Zeinstra LM, Schuitemaker F et al (2002) Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol 36(20):4410–4415

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Ge RS, Chen GR et al (2008) Involvement of testicular growth factors in fetal Leydig cell aggregation after exposure to phthalate in utero. Proc Natl Acad Sci USA 105(20):7218–7222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas BE, Fields C, Joshi N, Hofmann MC (2012) Mono-(2-ethylhexyl)-phthalate (MEHP) affects ERK-dependent GDNF signalling in mouse stem-progenitor spermatogonia. Toxicology 299(1):10–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manna PR, Wang XJ, Stocco DM (2003) Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 68(14):1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Meeker JD, Calafat AM, Hauser R (2009) Urinary metabolites of di(2-ethylhexyl) phthalate are associated with decreased steroid hormone levels in adult men. J Androl 30(3):287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midzak AS, Chen H, Papadopoulos V, Zirkin BR (2009) Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol Cell Endocrinol 299(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Nakamura D, Yanagiba Y, Duan Z et al (2010) Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol Lett 194(1–2):16–25

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL (2006) Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci U S A 103(25):9524–9529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne TF, Espenshade PJ (2009) Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it’s been. Genes Dev 23(22):2578–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shaughnessy PJ (2014) Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 29C:55–65

    Article  Google Scholar 

  • Ozaki Y, Saito K, Shinya M, Kawasaki T, Sakai N (2011) Evaluation of Sycp3, Plzf and Cyclin B3 expression and suitability as spermatogonia and spermatocyte markers in zebrafish. Gene Expr Patterns 11(5–6):309–315

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan S, Tripathi DN, Vikram A, Ramarao P, Jena GB (2009) Methotrexate-induced cytotoxicity and genotoxicity in germ cells of mice: intervention of folic and folinic acid. Mutat Res 673(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Pant N, Shukla M, Kumar Patel D et al (2008) Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol 231(1):112–116

    Article  CAS  PubMed  Google Scholar 

  • Pant N, Pant A, Shukla M, Mathur N, Gupta Y, Saxena D (2011) Environmental and experimental exposure of phthalate esters: the toxicological consequence on human sperm. Hum Exp Toxicol 30(6):507–514

    Article  CAS  PubMed  Google Scholar 

  • Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25(6):947–970

    Article  CAS  PubMed  Google Scholar 

  • Reinholdt LG, Schimenti JC (2005) Mei1 is epistatic to Dmc1 during mouse meiosis. Chromosoma 114(2):127–134

    Article  CAS  PubMed  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R (2001) Novel meiosis-specific isoform of mammalian SMC1. Mol Cell Biol 21(20):6984–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu JY, Whang J, Park H et al (2007) Di(2-ethylhexyl) phthalate induces apoptosis through peroxisome proliferators-activated receptor-gamma and ERK 1/2 activation in testis of Sprague-Dawley rats. J Toxicol Environ Health A 70(15–16):1296–1303

    Article  CAS  PubMed  Google Scholar 

  • Salazar G, Joshi A, Liu D, Wei H, Persson JL, Wolgemuth DJ (2005) Induction of apoptosis involving multiple pathways is a primary response to cyclin A1-deficiency in male meiosis. Dev Dyn Off Publ Am Assoc Anat 234(1):114–123

    CAS  Google Scholar 

  • Sasso-Cerri E (2009) Enhanced ERbeta immunoexpression and apoptosis in the germ cells of cimetidine-treated rats. Reprod Biol Endocrinol 7:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena D, Escamilla-Hernandez R, Little-Ihrig L, Zeleznik AJ (2007) Liver receptor homolog-1 and steroidogenic factor-1 have similar actions on rat granulosa cell steroidogenesis. Endocrinology 148(2):726–734

    Article  CAS  PubMed  Google Scholar 

  • Shankar SR, Bahirvani AG, Rao VK, Bharathy N, Ow JR, Taneja R (2013) G9a, a multipotent regulator of gene expression. Epigenetics 8(1):16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon L, Ekman GC, Garcia T et al (2010) ETV5 regulates sertoli cell chemokines involved in mouse stem/progenitor spermatogonia maintenance. Stem Cells 28(10):1882–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 30C:2–13

    Article  Google Scholar 

  • Song HW, Wilkinson MF (2014) Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 30C:14–26

    Article  Google Scholar 

  • Specht IO, Toft G, Hougaard KS et al (2014) Associations between serum phthalates and biomarkers of reproductive function in 589 adult men. Environ Int 66:146–156

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Sugimoto K, Nozaki M et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M, Nozaki M, Takeda N, Shinkai Y (2007) Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 26(14):3346–3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada Y, Naruse C, Costa Y et al (2011) HP1gamma links histone methylation marks to meiotic synapsis in mice. Development 138(19):4207–4217

    Article  CAS  PubMed  Google Scholar 

  • Ushijima Y, Inoue YH, Konishi T et al (2012) Roles of histone H3K9 methyltransferases during Drosophila spermatogenesis. Chromosome Res 20(3):319–331

    Article  CAS  PubMed  Google Scholar 

  • Volle DH, Duggavathi R, Magnier BC et al (2007) The small heterodimer partner is a gonadal gatekeeper of sexual maturation in male mice. Genes Dev 21(3):303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volle DH, Decourteix M, Garo E et al (2009) The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice. J Clin Investig 119(12):3752–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker WH (2009) Molecular mechanisms of testosterone action in spermatogenesis. Steroids 74(7):602–607

    Article  CAS  PubMed  Google Scholar 

  • Wirth JJ, Rossano MG, Potter R et al (2008) A pilot study associating urinary concentrations of phthalate metabolites and semen quality. Syst Biol Reprod Med 54(3):143–154

    Article  CAS  PubMed  Google Scholar 

  • Yan R, McKee BD (2013) The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis. PLoS Genet 9(7):e1003637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LD, Deng Q, Wang ZM et al (2013) Disruption of reproductive development in male rat offspring following gestational and lactational exposure to di-(2-ethylhexyl) phthalate and genistein. Biol Res 46(2):139–146

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (National 973 Program) (Grant No: 2011CB503700) and the National Natural Science Foundation of China (Grant No: 31170800).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Zhou.

Additional information

Chuan Liu and Peng Qian have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Qian, P., Yang, L. et al. Pubertal exposure to di-(2-ethylhexyl)-phthalate inhibits G9a-mediated histone methylation during spermatogenesis in mice. Arch Toxicol 90, 955–969 (2016). https://doi.org/10.1007/s00204-015-1529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1529-2

Keywords

Navigation