Skip to main content
Log in

The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials

  • Nanotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Manufactured nanomaterials (MNMs) have the potential to improve everyday life as they can be utilised in numerous medical applications and day-to-day consumer products. However, this increased use has led to concerns about the potential environmental and human health impacts. The protein p53 is a key transcription factor implicated in cellular defence and reparative responses to various stress factors. Additionally, p53 has been implicated in cellular responses following exposure to some MNMs. Here, the role of the MNM mediated p53 induction and activation and its downstream effects following exposure to five well-characterised materials [namely two types of TiO2, two carbon black (CB), and one single-walled carbon nanotube (SWCNT)] were investigated. MNM internalisation, cellular viability, p53 protein induction and activation, oxidative stress, inflammation and apoptosis were measured in murine cell line and primary pulmonary macrophage models. It was observed that p53 was implicated in the biological responses to MNMs, with oxidative stress associated with p53 activation (only following exposure to the SWCNT). We demonstrate that p53 acted as an antioxidant and anti-inflammatory in macrophage responses to SWCNT and CB NMs. However, p53 was neither involved in MNM-induced cellular toxicity, nor in the apoptosis induced by these MNMs. Moreover, the physicochemical characteristics of MNMs seemed to influence their biological effects-SWCNT the materials with the largest surface area and a fibrous shape were the most cytotoxic in this study and were capable of the induction and activation of p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bann RK, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V (2006) Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 7:295–296

    Article  Google Scholar 

  • Basich BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Ocerdorster G, Elder A (2014) Equivalebt titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute repiratoty tract inflammation. Part Fibre Toxicol 11:5

    Article  Google Scholar 

  • Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63:141–163

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Vousden KH (2005) Savior and slayer: the two faces of p53. Nat Med 11:1278–1279

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Burnett ME, Wang SQ (2011) Current sunscreen controversies: a critical review. Photodermatol Photoimmunol Photomed 27:58–67

    Article  CAS  PubMed  Google Scholar 

  • Bussy C, Paineau E, Cambedouzou J, Brun N, Mory C, Fayard B, Salome M, Pinault M, Huard M, Belade E, Armad L, Boczkowski J, Launois P, Lanone S (2013) Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalystnanoparticles. Part Fibre Toxicol 10:24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho WS, Duffin R, Bradley M, Megson IL, MacNee W, Lee JK, Jeong J, Donaldson D (2013) Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 10:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuartero M, del Rio JS, Blondeau P, Ortuno JA, Rius FX, Andrade FJ (2014) Rubber based substrates modified with carbon nanotubes inks to build flexible electrochemical sensors. Analytica Chemica Acta 827:95–102

    Article  CAS  Google Scholar 

  • De Souza VHR, Oliveira MM, Zarbin AJG (2014) Thin and flexible all-solid supercapacitor from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid–liquid interfaces. J Power Sources 260:34–42

    Article  Google Scholar 

  • Demokritou P, Gass S, Pyrgiotakis G, Cohen JM, Goldsmith W, McKinney W, Frazer D, Ma J, Schwegler-Berry D, Brain J, Castranova V (2013) An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO2 inhalation exposures. Nanotoxicology 7:1338–1350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, Macnee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Dowding JM, Das S, Kumar A, Dosani T, McCormack R, Gupta A, Sayle TXT, Sayle DC, von Kalm L, Seal S, Self WT (2013) Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano 7:4855–4868

  • Ema M, Kobayashi N, Naya M, Hansai S, Nakanishi J (2010) Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30:343–352

    Article  CAS  PubMed  Google Scholar 

  • Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, Haberl N, Brunelli A, Kreyling WG, Stone V (2012) Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci 131:537–547

    Article  PubMed  Google Scholar 

  • Gangwal S, Brown JS, Wang A, Houck KA, Dix DJ, Kavlock RJ, Hubal EAC (2011) Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ Health Perspect 119:1539–1546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giono LE, Manfredi JJ (2006) The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209:13–20

    Article  CAS  PubMed  Google Scholar 

  • Goven D, Boutten A, Lecon-Malas V, Marchal-Somme J, Soler P, Boczkowski J, Bonay M (2010) Induction of heme oxygenase-1, biliverdin reductase and H-ferritin in lung macrophage in smokers with primary spontaneous pneumothorax: role of HIF-1alpha. PLoS ONE 5:e10886

    Article  PubMed Central  PubMed  Google Scholar 

  • Hussain S, Bolan S, Baewa-Squibqn A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260:142–149

    Article  CAS  PubMed  Google Scholar 

  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100

    Article  CAS  PubMed  Google Scholar 

  • Kang SJ, Kim BM, Lee YJ, Chung HW (2008) Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 49:399–405

    Article  CAS  PubMed  Google Scholar 

  • Kermanizadeh A, Gaiser BK, Hutchison GR, Stone V (2012) An in vitro liver model–assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanoparticles. Part Fibre Toxicol 9:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kermanizadeh A, Chauché C, Balharry D, Brown DM, Kanase N, Boczkowski J, Lanone S, Stone V (2013) The role of kupffer cells in the hepatic response to silver nanoparticles. Nanotoxicology. doi:10.3109/17435390.2013.866284

  • Konczol M, Weiss A, Gminski R, Merfort I, Mersch-Sundermann V (2013) Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells. Toxicol Lett 216:171–180

    Article  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W (2010) Testing metal oxide nanomaterials for human safety. Adv Mater 22:2601–2627

    Article  CAS  PubMed  Google Scholar 

  • Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6:651–663

    Article  CAS  PubMed  Google Scholar 

  • Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Lanone S, Andujar P, Kermanizadeh A, Boczkowski J (2013) Determinants of carbon nanotube toxicity. Adv Drug Deliv Rev 65:2063–2069

    Article  CAS  PubMed  Google Scholar 

  • Maynard AD, Warheit DB (2011) Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120:109–129

    Article  Google Scholar 

  • Mroz RM, Schins RP, Li H, Drost EM, Macnee W, Donaldson K (2007) Nanoparticle carbon black driven DNA damage induces growth arrest and AP-1 and NFkappaB DNA binding in lung epithelial A549 cell line. J Physiol Pharmacol 58:461–470

    PubMed  Google Scholar 

  • Mroz RM, Schins RP, Li H, Jimenez LA, Drost EM, Holownia A, Macnee W, Donaldson K (2008) Nanoparticle-driven DNA damage mimics irradiation-related carcinogenesis pathways. Eur Respir J 31:241–251

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Toxicol 207:221–231

    Article  CAS  Google Scholar 

  • Murphy FA, Poland CA, Duffin R, Donaldson K (2013) Length dependant pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology 7:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Int Med 267:89–105

    Article  CAS  Google Scholar 

  • Oberdorster G (2012) Nanotoxicology: in vitro–in vivo dosimetry. Environmental Health Perspectives 120

  • Park EJ, Roh J, Kim SN, Kang MS, Han YA, Kim Y, Hong JT, Choi K (2011) A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and sub-chronic tissue damage in mice. Arch Toxicol 85:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Petkovic J, Zegura B, Stevanovic M, Drnovsek N, Uskokovic D, Novak S, Filipic M (2011) DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 5:341–353

    Article  CAS  PubMed  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran P, Baluchamy S, Gopikrishnan R, Biradar S, Ramesh V, Goornavar V, Thomas R, Wilson BL, Jeffers R, Hall JC, Ramash GT (2011) Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J Biol Chem 286:29725–29733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riedl SJ, Salvesen GS (2007) The apoptosome: signaling platform of cell death. Nat Rev Mol Cell Biol 8:405–413

    Article  CAS  PubMed  Google Scholar 

  • Sabina AA, Budanov AV, Ilvinskava GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313

    Article  Google Scholar 

  • Shi Y, Wang F, He J, Yaday S, Wang H (2010) Titanium dioxide nanoparticles cause apoptosis in BEAS-2B cells through the caspase 8/t-Bid-independent mitochondrial pathway. Toxicol Lett 196:21–27

    Article  CAS  PubMed  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer AR, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagen VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Cell Mol Physiol 289:698–708

    Article  Google Scholar 

  • Simon-Deckers A, Gouget B, Mayne-L’hermite M, Herlin-Boime N, Reynaud C, Carriere M (2008) In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253:137–146

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Hohr D, Fubini B, Martra G, Fenoglio I, Borm PJ, Schins RP (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222:141–151

    Article  CAS  PubMed  Google Scholar 

  • Tabet L, Bussy C, Amara N, Setyan A, Grodet A, Rossi MJ, Pairon JC, Boczkowski J, Lanone S (2009) Adverse effects of industrial multi-walled carbon nanotubes on human pulmonary cells. J Toxicol Environ Health 72:60–73

    Article  CAS  Google Scholar 

  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53 ± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Kitamura N, Morita M, Inubushi T, Chuio Y (2008) Assembly system of direct modified superparamagnetic iron oxide nanoparticles for target-specific MRI contrast agents. Bioorg Med Chem Lett 18:5463–5465

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Lin ZQ, Lin BC, Liu HL, Yan J, Xi ZG (2013) Single wall carbon nanotube induced inflammation in Cruor-Fibrinolysis system. Biomed Environ Sci 26:338–345

    CAS  PubMed  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Okada M, Kudo Y, Tonori Y, Niitsuya M, Sato T, Aizawa Y, Kotani M (2002) Differences in the effects of fibrous and particulate titanium dioxide on alveolar macrophages of Fischer 344 rats. J Toxicol Environ Health 65:1047–1060

    Article  CAS  Google Scholar 

  • Wawrzyniak A, Gornicka M, Hamulka J, Gajewska M, Drywien M, Pierzynowska J, Gronowska A (2013) α-Tocopherol, ascorbic acid, and β-carotene protect against oxidative stress but reveal no direct influence on p53 expression in rats subjected to stress. Nutr Res 33:868–875

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmi V, Fischer U, van Berlo D, Schulze-Osthoff K, Schins RPF, Albrexht A (2012) Evaluation of apoptosis in RAW 264.7 macrophages: facts and artefacts. Toxicol vitro 26:323–334

    Article  CAS  Google Scholar 

  • Wu J, Sun J, Xue Y (2010) Involvement of JNK and p53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett 199:269–276

    Article  CAS  PubMed  Google Scholar 

  • Ye SF, Wu YH, Hou ZQ, Zhqng QQ (2009) ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophy Res Commun 379:643–648

    Article  CAS  Google Scholar 

  • Yun YP, Lee JY, Ahn EK, Lee KH, Yoon HK, Lim Y (2009) Diesel exhaust particles induce apoptosis via p53 and Mdm2 in J774A.1 macrophage cell line. Toxicolo Vitro 23:21–28

    Article  CAS  Google Scholar 

  • Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1:a001883

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y (2009) Tumour suppression by p53: the importance of apoptosis and cellular senescence. J Pathol 219:3–15

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Labex Serenade (11-LABX-0064)”, the “Agence nationale de sécurité sanitaire de l’Alimentation, de l’Environnement et du Travail”–PhD grants of Lucie Armand and Jean-Marie Gagliolo. Angélique Simon-Deckers was funded from ANR, while Sandra Chrusciel was supported by AREMCAR. Jorge Boczwoski and Sophie Lanone were both recipients of a Contrat de Recherche Translationnelle, between Inserm and CHU Mondor (JB) and Inserm and CHI Créteil (SL). Finally, a special thank you to the Hospital University Department (DHU) Aging-Thorax, Vessels, Blood (A-TVB) for their support of this study.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Kermanizadeh or Jorge Boczkowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 4051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belade, E., Chrusciel, S., Armand, L. et al. The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials. Arch Toxicol 89, 1543–1556 (2015). https://doi.org/10.1007/s00204-014-1324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1324-5

Keywords

Navigation