Skip to main content
Log in

"Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

3,4-Methylenedioxymethamphetamine (MDMA; “ecstasy”) is a recreational hallucinogenic drug of abuse known to elicit neurotoxic properties. Hepatic formation of neurotoxic metabolites is thought to play a major role in MDMA-related neurotoxicity, though the mechanisms involved are still unclear. Here, we studied the neurotoxicity mechanisms and stability of MDMA and 6 of its major human metabolites, namely α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) and their correspondent glutathione (GSH) and N-acetyl-cysteine (NAC) conjugates, under normothermic (37 °C) or hyperthermic conditions (40 °C), using cultured SH-SY5Y differentiated cells. We showed that MDMA metabolites exhibited toxicity to SH-SY5Y differentiated cells, being the GSH and NAC conjugates more toxic than their catecholic precursors and MDMA. Furthermore, whereas the toxicity of the catechol metabolites was potentiated by hyperthermia, NAC-conjugated metabolites revealed higher toxicity under normothermia and GSH-conjugated metabolites-induced toxicity was temperature-independent. Moreover, a time-dependent decrease in extracellular concentration of MDMA metabolites was observed, which was potentiated by hyperthermia. The antioxidant NAC significantly protected against the neurotoxic effects of MDMA metabolites. MDMA metabolites increased intracellular glutathione levels, though depletion in thiol content was observed in MDMA-exposed cells. Finally, the neurotoxic effects induced by the MDMA metabolite N-Me-α-MeDA involved caspase 3 activation. In conclusion, this study evaluated the stability of MDMA metabolites in vitro, and demonstrated that the catechol MDMA metabolites and their GSH and NAC conjugates, rather than MDMA itself, exhibited neurotoxic actions in SH-SY5Y differentiated cells, which were differently affected by hyperthermia, thus highlighting a major role for reactive metabolites and hyperthermia in MDMA’s neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ádori C, Andó RD, Kovács GG, Bagdy G (2006) Damage of serotonergic axons and immunolocalization of Hsp27, Hsp72, and Hsp90 molecular chaperones after a single dose of MDMA administration in Dark Agouti rat: temporal, spatial, and cellular patterns. J Comp Neurol 497:251–269

    Article  PubMed  Google Scholar 

  • Aguirre P, Valdés P, Aracena-Parks P, Tapia V, Núñez MT (2007) Upregulation of γ-glutamate-cysteine ligase as part of the long-term adaptation process to iron accumulation in neuronal SH-SY5Y cells. Am J Physiol Cell Physiol 292:2197–2203

    Article  Google Scholar 

  • Bai F, Lau SS, Monks TJ (1999) Glutathione and N-acetylcysteine conjugates of α-methyldopamine produce serotonergic neurotoxicity: possible role in methylenedioxyamphetamine-mediated neurotoxicity. Chem Res Toxicol 12:1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Bai F, Jones DC, Lau SS, Monks TJ (2001) Serotonergic neurotoxicity of 3,4-(±)-methylenedioxyamphetamine and 3,4-(±)-methylendioxymethamphetamine (ecstasy) is potentiated by inhibition of γ-glutamyl transpeptidase. Chem Res Toxicol 14:863–870

    Article  CAS  PubMed  Google Scholar 

  • Ballatori N, Krance SM, Marchan R, Hammond CL (2009) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 30:13–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barbosa DJ, Capela JP, Oliveira JMA et al (2012) Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes. Br J Pharmacol 165:1017–1033

    Article  PubMed  Google Scholar 

  • Barbosa DJ, Capela JP, Silva R et al (2013) The mixture of “ecstasy” and its metabolites is toxic to human SH-SY5Y differentiated cells at in vivo relevant concentrations. Arch Toxicol. doi:10.1007/s00204-013-1120-7

  • Beitia G, Cobreros A, Sainz L, Cenarruzabeitia E (1999) 3,4-Methylenedioxymethamphetamine (ecstasy)-induced hepatotoxicity: effect on cytosolic calcium signals in isolated hepatocytes. Liver 19:234–241

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Meisel A, Abreu AR et al (2006a) Neurotoxicity of ecstasy metabolites in rat cortical neurons, and influence of hyperthermia. J Pharmacol Exp Ther 316:53–61

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Ruscher K, Lautenschlager M et al (2006b) Ecstasy-induced cell death in cortical neuronal cultures is serotonin 2A-receptor-dependent and potentiated under hyperthermia. Neuroscience 139:1069–1081

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Macedo C, Branco PS et al (2007) Neurotoxicity mechanisms of thioether ecstasy metabolites. Neuroscience 146:1743–1757

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Carvalho F, Bastos ML (2001) Is hyperthermia the triggering factor for hepatotoxicity induced by 3,4-methylenedioxymethamphetamine (ecstasy)? An in vitro study using freshly isolated mouse hepatocytes. Arch Toxicol 74:789–793

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Hawksworth G, Milhazes N et al (2002) Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells. Arch Toxicol 76:581–588

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Remiao F, Milhazes N et al (2004a) The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology 200:193–203

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Remião F, Milhazes N et al (2004b) Metabolism is required for the expression of ecstasy-induced cardiotoxicity in vitro. Chem Res Toxicol 17:623–632

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Carmo H, Costa VM et al (2012) Toxicity of amphetamines: an update. Arch Toxicol 86:1167–1231

    Article  CAS  PubMed  Google Scholar 

  • Chadwick IS, Curry PD, Linsley A, Freemont AJ, Doran B (2001) Ecstasy, 3-4 methylenedioxymethamphetamine (MDMA), a fatality associated with coagulopathy and hyperthermia. J R Soc Med 84:371

    Google Scholar 

  • Chu T, Kumagai Y, DiStefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51:789–796

    Article  CAS  PubMed  Google Scholar 

  • Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS (1987) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 241:338–345

    CAS  PubMed  Google Scholar 

  • Constantinescu R, Constantinescu AT, Reichmann H, Janetzky B (2007) Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J Neural Transm (Suppl 72):17–28

  • de la Torre R, Farré M (2004) Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol Sci 25:505–508

    Article  PubMed  Google Scholar 

  • Docherty JR, Green AR (2010) The role of monoamines in the changes in body temperature induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and its derivatives. Br J Pharmacol 160:1029–1044

    Article  CAS  PubMed  Google Scholar 

  • Erives GV, Lau SS, Monks TJ (2008) Accumulation of neurotoxic thioether metabolites of 3,4-(±)-methylenedioxymethamphetamine in rat brain. J Pharmacol Exp Ther 324:284–291

    Article  CAS  PubMed  Google Scholar 

  • Erritzoe D, Frokjaer VG, Holst KK et al (2011) In vivo imaging of cerebral serotonin transporter and serotonin2a receptor binding in 3,4-methylenedioxymethamphetamine (mdma or “ecstasy”) and hallucinogen users. Arch Gen Psychiatry 68:562–576

    Article  PubMed  Google Scholar 

  • Escobedo I, O’Shea E, Orio L et al (2005) A comparative study on the acute and long-term effects of MDMA and 3,4-dihydroxymethamphetamine (HHMA) on brain monoamine levels after i.p. or striatal administration in mice. Br J Pharmacol 144:231–241

    Article  CAS  PubMed  Google Scholar 

  • Esteban B, O’Shea E, Camarero J, Sanchez V, Green AR, Colado MI (2001) 3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose. Psychopharmacology 154:251–260

    Article  CAS  PubMed  Google Scholar 

  • Farfel GM, Seiden LS (1995) Role of hypothermia in the mechanism of protection against serotonergic toxicity. I. Experiments using 3,4-methylenedioxymethamphetamine, dizocilpine, CGS 19755 and NBQX. J Pharmacol Exp Ther 272:860–867

    CAS  PubMed  Google Scholar 

  • Felim A, Herrera G, Neudörffer A, Blanco M, O’Connor J, Largeron M (2009) Synthesis and in vitro cytotoxicity profile of the R-enantiomer of 3,4-dihydroxymethamphetamine (R-(−)-HHMA): comparison with related catecholamines. Chem Res Toxicol 23:211–219

    Article  Google Scholar 

  • Ferreira PS, Nogueira TB, Costa VM et al (2013) Neurotoxicity of “ecstasy” and its metabolites in human dopaminergic differentiated SH-SY5Y cells. Toxicol Lett 216:159–170

    Article  CAS  PubMed  Google Scholar 

  • Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89:3070–3074

    Article  CAS  PubMed  Google Scholar 

  • Gollamudi R, Ali SF, Lipe G et al (1989) Influence of inducers and inhibitors on the metabolism in vitro and neurochemical effects in vivo of MDMA. Neurotoxicology 10:455–466

    CAS  PubMed  Google Scholar 

  • Granado N, Ares-Santos S, Oliva I et al (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42:391–403

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Hatzidimitriou G, McCann UD, Ricaurte GA (1999) Altered serotonin innervation patterns in the forebrain of monkeys treated with (±)3,4-methylenedioxymethamphetamine seven years previously: factors influencing abnormal recovery. J Neurosci 19:5096–5107

    CAS  PubMed  Google Scholar 

  • Henry JA, Jeffreys KJ, Dawling S (1992) Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”). Lancet 340:384–387

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu M, Kumagai Y, Unger SE, Cho AK (1990) Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. J Pharmacol Exp Ther 254:521–527

    CAS  PubMed  Google Scholar 

  • Johnson BN, Yamamoto BK (2010) Chronic stress enhances the corticosterone response and neurotoxicity to +3,4-methylenedioxymethamphetamine (MDMA): the role of ambient temperature. J Pharmacol Exp Ther 335:180–189

    Article  CAS  PubMed  Google Scholar 

  • Jones DC, Duvauchelle C, Ikegami A et al (2005) Serotonergic neurotoxic metabolites of ecstasy identified in rat brain. J Pharmacol Exp Ther 313:422–431

    Article  CAS  PubMed  Google Scholar 

  • Kish SJ, Fitzmaurice PS, Chang LJ, Furukawa Y, Tong J (2010a) Low striatal serotonin transporter protein in a human polydrug MDMA (ecstasy) user: a case study. J Psychopharmacol 24:281–284

    Article  CAS  PubMed  Google Scholar 

  • Kish SJ, Lerch J, Furukawa Y et al (2010b) Decreased cerebral cortical serotonin transporter binding in ecstasy users: a positron emission tomography/[11C]DASB and structural brain imaging study. Brain 133:1779–1797

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Macedo C, Branco PS, Ferreira LM et al (2007) Synthesis and cyclic voltammetry studies of 3,4-methylenedioxymethamphetamine (MDMA) human metabolites. J Health Sci 53:31–42

    Article  CAS  Google Scholar 

  • Malberg JE, Seiden LS (1998) Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 18:5086–5094

    CAS  PubMed  Google Scholar 

  • McCann UD, Ridenour A, Shaham Y, Ricaurte GA (1994) Serotonin neurotoxicity after (±)3,4-methylenedioxymethamphetamine (MDMA; “Ecstasy”): a controlled study in humans. Neuropsychopharmacology 10:129–138

    Article  CAS  PubMed  Google Scholar 

  • Miller RT, Lau SS, Monks TJ (1996) Effects of intracerebroventricular administration of 5-(glutathion-S-yl)-α-methyldopamine on brain dopamine, serotonin, and norepinephrine concentrations in male Sprague-Dawley rats. Chem Res Toxicol 9:457–465

    Article  CAS  PubMed  Google Scholar 

  • Monks TJ, Jones DC, Fengju B, Lau SS (2004) The role of metabolism in 3,4-Methylenodioxyamphetamine and 3,4-Methylenodioxymethamphetamine (Ecstasy) toxicity. Ther Drug Monit 26:132–136

    Article  CAS  PubMed  Google Scholar 

  • Núñez MT, Gallardo V, Muñoz P et al (2004) Progressive iron accumulation induces a biphasic change in the glutathione content of neuroblastoma cells. Free Radic Biol Med 37:953–960

    Article  PubMed  Google Scholar 

  • Parrott AC (2012) MDMA and 5-HT neurotoxicity: the empirical evidence for its adverse effects in humans—no need for translation. Br J Pharmacol 166:1518–1520

    Article  CAS  PubMed  Google Scholar 

  • Patel NJ, Fullone JS, Anders MW (1993) Brain uptake of S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine, the glutathione and cysteine S-conjugates of the neurotoxin dichloroacetylene. Brain Res Mol Brain Res 17:53–58

    Article  CAS  PubMed  Google Scholar 

  • Presgraves S, Ahmed T, Borwege S, Joyce J (2003) Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 5:579–598

    Article  Google Scholar 

  • Quednow BB, Jessen F, Kühn K, Maier W, Daum I, Wagner M (2006) Memory deficits in abstinent MDMA (ecstasy) users: neuropsychological evidence of frontal dysfunction. J Psychopharmacol 20:373–384

    Article  PubMed  Google Scholar 

  • Ricaurte GA, DeLanney LE, Irwin I, Langston JW (1988) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res 446:165–168

    Article  CAS  PubMed  Google Scholar 

  • Roberts GMP, Nestor L, Garavan H (2009) Learning and memory deficits in ecstasy users and their neural correlates during a face-learning task. Brain Res 1292:71–81

    Article  CAS  PubMed  Google Scholar 

  • Schmued LC (2003) Demonstration and localization of neuronal degeneration in the rat forebrain following a single exposure to MDMA. Brain Res 974:127–133

    Article  CAS  PubMed  Google Scholar 

  • Shenouda SK, Varner KJ, Carvalho F, Lucchesi PA (2009) Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Cardiovasc Toxicol 9:30–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi MM, Kugelman A, Iwamoto T, Tian L, Forman HJ (1994) Quinone-induced oxidative stress elevates glutathione and induces gamma-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem 269:26512–26517

    CAS  PubMed  Google Scholar 

  • Silva R, Boldt S, Costa VM et al (2007) Evaluation of GSH adducts of adrenaline in biological samples. Biomed Chromatogr 21:670–679

    Article  CAS  PubMed  Google Scholar 

  • Slot AJ, Wise DD, Deeley RG, Monks TJ, Cole SPC (2008) Modulation of human multidrug resistance protein (MRP) 1 (ABCC1) and MRP2 (ABCC2) transport activities by endogenous and exogenous glutathione-conjugated catechol metabolites. Drug Metab Dispos 36:552–560

    Article  CAS  PubMed  Google Scholar 

  • Tai YF, Hoshi R, Brignell CM et al (2011) Persistent nigrostriatal dopaminergic abnormalities in ex-users of MDMA (“Ecstasy”): an 18F-dopa PET study. Neuropsychopharmacology 36:735–743

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Yanagida T, Inden M et al (2009) Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson’s disease models. J Neurosci Res 87:576–585

    Article  CAS  PubMed  Google Scholar 

  • Touriño C, Zimmer A, Valverde O (2010) THC prevents MDMA neurotoxicity in mice. PLoS ONE 5:e9143

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by “Fundação para a Ciência e a Tecnologia (FCT),” Portugal (Project PTDC/SAU-FCF/102958/2008), under the framework of “Programa Operacional Temático Factores de Competitividade (COMPTE) do Quadro Comunitário de Apoio III” and “Fundo Comunitário Europeu (FEDER) (FCOMP-01-0124-FEDER-011079).” The NMR spectrometers are part of the National NMR Facility, supported by FCT (RECI/BBB-BQB/0230/2012). DJB was supported by a fellowship (SFRH/BD/64939/2009) from FCT, Portugal.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel José Barbosa or Félix Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, D.J., Capela, J.P., Silva, R. et al. "Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites. Arch Toxicol 88, 515–531 (2014). https://doi.org/10.1007/s00204-013-1147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1147-9

Keywords

Navigation