Skip to main content

Advertisement

Log in

Hexabromocyclododecane facilitates FSH activation of ERK1/2 and AKT through epidermal growth factor receptor in rat granulosa cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The toxicity of hexabromocyclododecane (HBCDD) has been extensively studied; however, the mechanism and the effects of HBCDD on female reproductive system have been less frequently reported. In this study, we exposed rat granulosa cells to HBCDD during in vitro follicle-stimulating hormone (FSH)-driven cell proliferation and differentiation. Here, we show that HBCDD affects the FSH-driven signal transduction and ovulatory competence of granulosa cells. We found that HBCDD over-activates the FSH-stimulated extracellular-regulated kinase 1/2 (ERK1/2) and protein kinase B (PKB, also known as AKT). Inactivation of the epidermal growth factor receptor (EGFR) kinase activity with AG1478 and the mitogen-regulated kinase activity with U0126 completely prevented ERK1/2 activation in the FSH-stimulated and HBCDD-exposed granulosa cells. Moreover, AG1478 restored the HBCDD-induced AKT activation to the level observed in the FSH-stimulated cells. Western blot shows that HBCDD potentiates FSH-stimulated EGFR phosphorylation in granulosa cells. Real-time PCR demonstrates that HBCDD decreases the FSH-induced luteinizing hormone receptor (Lhr) expression. Inadequate level of LHR in the HBCDD-exposed granulosa cells prevented human chorionic gonadotropin in stimulating expression of the ovulatory genes such as amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr). Addition of U0126 and AG1478 restored Lhr level in the FSH-stimulated and HBCDD-exposed granulosa cells. These results indicate a direct effect of HBCDD on EGFR activation, resulting in over-activation of ERK1/2 and AKT signal transduction pathways in the FSH-treated cells. Increased activity of the EGFR-ERK1/2 pathway above physiological level prevents sufficient acquisition of LHR in proliferating granulosa cells, thus compromising ovulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andric N, Ascoli M (2006) A delayed gonadotropin-dependent and growth factor-mediated activation of the extracellular signal-regulated kinase 1/2 cascade negatively regulates aromatase expression in granulosa cells. Mol Endocrinol 20(12):3308–3320. doi:10.1210/me.2006-0241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andric N, Thomas M, Ascoli M (2010) Transactivation of the epidermal growth factor receptor is involved in the lutropin receptor-mediated down-regulation of ovarian aromatase expression in vivo. Mol Endocrinol 24(3):552–560. doi:10.1210/me.2009-0450

    Article  CAS  PubMed  Google Scholar 

  • Arkhipov A, Shan Y, Das R et al (2013) Architecture and membrane interactions of the EGF receptor. Cell 152(3):557–569. doi:10.1016/j.cell.2012.12.030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell KL (1979) Ovarian granulosa cells isolated with EGTA and hypertonic sucrose: cellular integrity and function. Biol Reprod 21(4):773–786

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu X, Segaloff DL (2000) A novel cyclic adenosine 3′,5′-monophosphate-responsive element involved in the transcriptional regulation of the lutropin receptor gene in granulosa cells. Mol Endocrinol 14(9):1498–1508

    CAS  PubMed  Google Scholar 

  • Christen V, Crettaz P, Oberli-Schrammli A, Fent K (2010) Some flame retardants and the antimicrobials triclosan and triclocarban enhance the androgenic activity in vitro. Chemosphere 81(10):1245–1252. doi:10.1016/j.chemosphere.2010.09.031

    Article  CAS  PubMed  Google Scholar 

  • Conneely OM (2010) Progesterone receptors and ovulation. Handb Exp Pharmacol 198:37–44. doi:10.1007/978-3-642-02062-9_3

    Article  CAS  PubMed  Google Scholar 

  • Cottom J, Salvador LM, Maizels ET et al (2003) Follicle-stimulating hormone activates extracellular signal-regulated kinase but not extracellular signal-regulated kinase kinase through a 100-kDa phosphotyrosine phosphatase. J Biol Chem 278(9):7167–7179. doi:10.1074/jbc.M203901200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Covaci A, Gerecke AC, Law RJ et al (2006) Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol 40(12):3679–3688

    Article  CAS  PubMed  Google Scholar 

  • Dingemans MM, Heusinkveld HJ, de Groot A, Bergman A, van den Berg M, Westerink RH (2009) Hexabromocyclododecane inhibits depolarization-induced increase in intracellular calcium levels and neurotransmitter release in PC12 cells. Toxicol Sci 107(2):490–497. doi:10.1093/toxsci/kfn249

    Article  CAS  PubMed  Google Scholar 

  • Dorosh A, Ded L, Elzeinova F, Peknicova J (2011) Assessing oestrogenic effects of brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on MCF-7 cells. Folia Biol 57(1):35–39

    CAS  Google Scholar 

  • Dufau ML, Liao M, Zhang Y (2010) Participation of signaling pathways in the derepression of luteinizing hormone receptor transcription. Mol Cell Endocrinol 314(2):221–227. doi:10.1016/j.mce.2009.05.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ema M, Fujii S, Hirata-Koizumi M, Matsumoto M (2008) Two-generation reproductive toxicity study of the flame retardant hexabromocyclododecane in rats. Reprod Toxicol 25(3):335–351. doi:10.1016/j.reprotox.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  • Fa S, Pogrmic-Majkic K, Dakic V et al (2013a) Acute effects of hexabromocyclododecane on Leydig cell cyclic nucleotide signaling and steroidogenesis in vitro. Toxicol Lett 218(1):81–90. doi:10.1016/j.toxlet.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  • Fa S, Pogrmic-Majkic K, Samardzija D et al (2013b) Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2013.03.031

    PubMed  Google Scholar 

  • Fan HY, Liu Z, Shimada M et al (2009) MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324(5929):938–941. doi:10.1126/science.1171396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzpatrick SL, Carlone DL, Robker RL, Richards JS (1997) Expression of aromatase in the ovary: down-regulation of mRNA by the ovulatory luteinizing hormone surge. Steroids 62(1):197–206

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Robayna IJ, Alliston TN, Buse P, Firestone GL, Richards JS (1999) Functional and subcellular changes in the A-kinase-signaling pathway: relation to aromatase and Sgk expression during the transition of granulosa cells to luteal cells. Mol Endocrinol 13(8):1318–1337. doi:10.1210/me.13.8.1318

    CAS  PubMed  Google Scholar 

  • Hsieh M, Lee D, Panigone S et al (2007) Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol 27(5):1914–1924. doi:10.1128/MCB.01919-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hunzicker-Dunn ME, Lopez-Biladeau B, Law NC, Fiedler SE, Carr DW, Maizels ET (2012) PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc Natl Acad Sci USA 109(44):E2979–E2988. doi:10.1073/pnas.1205661109

    Article  CAS  PubMed  Google Scholar 

  • Ibhazehiebo K, Iwasaki T, Xu M, Shimokawa N, Koibuchi N (2011) Brain-derived neurotrophic factor (BDNF) ameliorates the suppression of thyroid hormone-induced granule cell neurite extension by hexabromocyclododecane (HBCD). Neurosci Lett 493(1–2):1–7. doi:10.1016/j.neulet.2011.01.062

    Article  CAS  PubMed  Google Scholar 

  • Kayampilly PP, Menon KM (2009) Follicle-stimulating hormone inhibits adenosine 5′-monophosphate-activated protein kinase activation and promotes cell proliferation of primary granulosa cells in culture through an Akt-dependent pathway. Endocrinology 150(2):929–935. doi:10.1210/en.2008-1032

    Article  CAS  PubMed  Google Scholar 

  • Kwintkiewicz J, Giudice LC (2009) The interplay of insulin-like growth factors, gonadotropins, and endocrine disruptors in ovarian follicular development and function. Semin Reprod Med 27(1):43–51. doi:10.1055/s-0028-1108009

    Article  CAS  PubMed  Google Scholar 

  • Mariussen E, Fonnum F (2003) The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles. Neurochem Int 43(4–5):533–542

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Park-Sarge OK, Mayo KE (1996) Gonadotropins induce rapid phosphorylation of the 3′,5′-cyclic adenosine monophosphate response element binding protein in ovarian granulosa cells. Endocrinology 137(8):3234–3245

    CAS  PubMed  Google Scholar 

  • Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M (2004) EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303(5658):682–684. doi:10.1126/science.10924631092463

    Article  CAS  PubMed  Google Scholar 

  • Park MA, Hwang KA, Lee HR, Yi BR, Jeung EB, Choi KC (2012) Cell growth of BG-1 ovarian cancer cells is promoted by di-n-butyl phthalate and hexabromocyclododecane via upregulation of the cyclin D and cyclin-dependent kinase-4 genes. Mol Med Rep 5(3):761–766. doi:10.3892/mmr.2011.712

    CAS  PubMed  Google Scholar 

  • Penov Gasi KM, Miljkovic DA, Medic Mijacevic LD et al (2003) Synthesis, X-ray crystal structures and biological activity of 16-amino-17-substituted-D-homo steroid derivatives. Steroids 68(7–8):667–676

    Article  CAS  PubMed  Google Scholar 

  • Pogrmic K, Fa S, Dakic V, Kaisarevic S, Kovacevic R (2009) Atrazine oral exposure of peripubertal male rats downregulates steroidogenesis gene expression in Leydig cells. Toxicol Sci 111(1):189–197. doi:10.1093/toxsci/kfp135

    Article  CAS  PubMed  Google Scholar 

  • Robker RL, Richards JS (1998) Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol 12(7):924–940

    CAS  PubMed  Google Scholar 

  • Saegusa Y, Fujimoto H, Woo GH et al (2009) Developmental toxicity of brominated flame retardants, tetrabromobisphenol A and 1,2,5,6,9,10-hexabromocyclododecane, in rat offspring after maternal exposure from mid-gestation through lactation. Reprod Toxicol 28(4):456–467. doi:10.1016/j.reprotox.2009.06.011

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Hernandez-Gonzalez I, Gonzalez-Robayna I, Richards JS (2006) Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol Endocrinol 20(6):1352–1365. doi:10.1210/me.2005-0504

    Article  CAS  PubMed  Google Scholar 

  • Shkolnik K, Tadmor A, Ben-Dor S, Nevo N, Galiani D, Dekel N (2011) Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci USA 108(4):1462–1467. doi:10.1073/pnas.1017213108

    Article  CAS  PubMed  Google Scholar 

  • Thomsen C, Molander P, Daae HL et al (2007) Occupational exposure to hexabromocyclododecane at an industrial plant. Environ Sci Technol 41(15):5210–5216

    Article  CAS  PubMed  Google Scholar 

  • van der Ven LT, Verhoef A, van de Kuil T et al (2006) A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in Wistar rats. Toxicol Sci 94(2):281–292. doi:10.1093/toxsci/kfl113

    Article  PubMed  Google Scholar 

  • van der Ven LT, van de Kuil T, Leonards PE et al (2009) Endocrine effects of hexabromocyclododecane (HBCD) in a one-generation reproduction study in Wistar rats. Toxicol Lett 185(1):51–62. doi:10.1016/j.toxlet.2008.12.003

    Article  PubMed  Google Scholar 

  • Wayne CM, Fan HY, Cheng X, Richards JS (2007) Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol Endocrinol 21(8):1940–1957. doi:10.1210/me.2007-0020

    Article  CAS  PubMed  Google Scholar 

  • Williams AL, DeSesso JM (2010) The potential of selected brominated flame retardants to affect neurological development. J Toxicol Environ Health B 13(5):411–448. doi:10.1080/10937401003751630

    Article  CAS  Google Scholar 

  • Zeleznik AJ, Saxena D, Little-Ihrig L (2003) Protein kinase B is obligatory for follicle-stimulating hormone-induced granulosa cell differentiation. Endocrinology 144(9):3985–3994. doi:10.1210/en.2003-0293

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yang F, Xu C, Liu W, Wen S, Xu Y (2008) Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell. Toxicol In Vitro 22(6):1520–1527. doi:10.1016/j.tiv.2008.05.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the European Commission, Research Executive Agency [PCIG11-2012-321745 to N.A.], Serbian Ministry of Education and Science, and Secretariat of Autonomic Province of Vojvodina, Republic of Serbia [Grant Numbers 173037 and 257, respectively]. The authors are grateful to G. D. Niswender (Colorado State University) for the supply of estradiol and progesterone antiserum. The authors wish to thank Bojana Stanic for her assistance in English language editing.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Andric.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fa, S., Samardzija, D., Odzic, L. et al. Hexabromocyclododecane facilitates FSH activation of ERK1/2 and AKT through epidermal growth factor receptor in rat granulosa cells. Arch Toxicol 88, 345–354 (2014). https://doi.org/10.1007/s00204-013-1133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1133-2

Keywords

Navigation