Skip to main content

Advertisement

Log in

Unraveling DNA damage response-signaling networks through systems approaches

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Genotoxic perturbation holds a central place in cancer formation and aging, but also is key to cancer therapy by irradiation or chemotherapeutic drugs. Sensing of DNA lesions initiates a highly complex DNA damage response (DDR). This response involves signaling cascades that activate appropriate damage repair pathways, arrest the cell cycle, and ultimately determine cell survival or death. The DDR must be integrated with ongoing signaling and housekeeping processes. With the emergence of high-throughput omics technologies, it has become clear that DNA damage-mediated responses penetrate far deeper than previously appreciated into virtually all cellular signaling pathways. Advances in the last decade have revealed a plethora of early DNA damage-induced changes in posttranslational modifications and subsequent alterations in gene expression profiles, and have provided a glimpse into the assorted rewiring of signal transduction cascades providing biomarkers for chemo- or radiosensitivity. At the same time, genome-wide RNAi screening has provided mechanistic insights into DDR signaling cascades and identified genes involved in mechanisms of cancer resistance to genotoxic therapies. Most recently, distinct omics datasets have been integrated, and sophisticated mathematical models have been applied to the DDR. Here, we review such recent advances that have widened and, in some cases, deepened our knowledge of DDR signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamson B, Smogorzewska A, Sigoillot FD, King RW, Elledge SJ (2012) A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat Cell Biol 14:318–328

    Article  PubMed  CAS  Google Scholar 

  • Arrell DK, Terzic A (2010) Network systems biology for drug discovery. Clin Pharmacol Ther 88:120–125

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M, Fiedler D, Dutkowski J, Guenole A, van Attikum H, Shokat KM, Kolodner RD, Huh WK, Aebersold R, Keogh MC, Krogan NJ, Ideker T (2010) Rewiring of genetic networks in response to DNA damage. Science 330:1385–1389

    Article  PubMed  CAS  Google Scholar 

  • Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  PubMed  CAS  Google Scholar 

  • Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, Warrener P, Jackson AL, Carleton M, Oatley M, Locco L, Santini F, Smith T, Kunapuli P, Ferrer M, Strulovici B, Friend SH, Linsley PS (2006) Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26:9377–9386

    Article  PubMed  CAS  Google Scholar 

  • Batchelor E, Loewer A, Lahav G (2009) The ups and downs of p53: understanding protein dynamics in single cells. Nat Rev Cancer 9:371–377

    Article  PubMed  CAS  Google Scholar 

  • Batchelor E, Loewer A, Mock C, Lahav G (2011) Stimulus-dependent dynamics of p53 in single cells. Mol Syst Biol 7:488

    PubMed  Google Scholar 

  • Begley TJ, Samson LD (2004) Network responses to DNA damaging agents. DNA Repair (Amst) 3:1123–1132

    Article  CAS  Google Scholar 

  • Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C (2012) Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 46:212–225

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen MV, Larsen DH, Bunkenborg J, Bartek J, Lukas J, Andersen JS (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9:1314–1323

    Article  PubMed  CAS  Google Scholar 

  • Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang SY, Chen DJ, Aebersold R, Shiloh Y (2010) ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal 3:rs3

    Google Scholar 

  • Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297:1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Bild AH, Potti A, Nevins JR (2006) Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 6:735–741

    Article  PubMed  CAS  Google Scholar 

  • Boulton SJ, Gartner A, Reboul J, Vaglio P, Dyson N, Hill DE, Vidal M (2002) Combined functional genomic maps of the C. elegans DNA damage response. Science 295:127–131

    Article  PubMed  CAS  Google Scholar 

  • Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12:587–598

    Article  PubMed  CAS  Google Scholar 

  • Califano A, Butte AJ, Friend S, Ideker T, Schadt E (2012) Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat Genet 44:841–847

    Article  PubMed  CAS  Google Scholar 

  • Carreras Puigvert J, von Stechow L, Siddappa R, Pines A, Bahjat M, Haazen LC, Olsen JV, Vrieling H, Meerman JH, Mullenders LH, van de Water B and Danen EH (2013) Systems biology approach identifies the kinase csnk1a1 as a regulator of the DNA damage response in embryonic stem cells. Sci Signal 6:ra5

    Google Scholar 

  • Cavill R, Kamburov A, Ellis JK, Athersuch TJ, Blagrove MS, Herwig R, Ebbels TM, Keun HC (2011) Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol 7:e1001113

    Article  PubMed  CAS  Google Scholar 

  • Chari R, Thu KL, Wilson IM, Lockwood WW, Lonergan KM, Coe BP, Malloff CA, Gazdar AF, Lam S, Garnis C, MacAulay CE, Alvarez CE, Lam WL (2010) Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer. Cancer Metastasis Rev 29:73–93

    Article  PubMed  Google Scholar 

  • Choi M, Shi J, Jung SH, Chen X and Cho KH (2012) Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage. Sci Signal 5:ra83

    Google Scholar 

  • Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140

    Article  PubMed  Google Scholar 

  • Chuang HY, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744

    Article  PubMed  CAS  Google Scholar 

  • Cotta-Ramusino C, McDonald ER 3rd, Hurov K, Sowa ME, Harper JW, Elledge SJ (2011) A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 332:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12:801–817

    Article  PubMed  CAS  Google Scholar 

  • Daub H (2012) DNA damage response: multilevel proteomics gains momentum. Mol Cell 46:113–114

    Article  PubMed  CAS  Google Scholar 

  • Eschrich S, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, Torres-Roca JF (2009) Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys 75:497–505

    Article  PubMed  CAS  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  • Fry RC, Begley TJ, Samson LD (2005) Genome-wide responses to DNA-damaging agents. Annu Rev Microbiol 59:357–377

    Article  PubMed  CAS  Google Scholar 

  • Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin AC (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68

    Article  PubMed  CAS  Google Scholar 

  • Geva-Zatorsky N, Dekel E, Batchelor E, Lahav G, Alon U (2010) Fourier analysis and systems identification of the p53 feedback loop. Proc Natl Acad Sci USA 107:13550–13555

    Article  PubMed  CAS  Google Scholar 

  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690

    Article  PubMed  CAS  Google Scholar 

  • Guenole A, Srivas R, Vreeken K, Wang ZZ, Wang S, Krogan NJ, Ideker T, van Attikum H (2013) Dissection of DNA damage responses using multiconditional genetic interaction maps. Mol Cell 49:346–358

    Article  PubMed  CAS  Google Scholar 

  • Gyorffy B, Surowiak P, Kiesslich O, Denkert C, Schafer R, Dietel M, Lage H (2006) Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer 118:1699–1712

    Article  PubMed  Google Scholar 

  • Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40:333–344

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  PubMed  CAS  Google Scholar 

  • Huen MS, Chen J (2010) Assembly of checkpoint and repair machineries at DNA damage sites. Trends Biochem Sci 35:101–108

    Article  PubMed  CAS  Google Scholar 

  • Hurov KE, Cotta-Ramusino C, Elledge SJ (2010) A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev 24:1939–1950

    Article  PubMed  CAS  Google Scholar 

  • Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565

    Article  PubMed  Google Scholar 

  • Ideker T, Dutkowski J, Hood L (2011) Boosting signal-to-noise in complex biology: prior knowledge is power. Cell 144:860–863

    Article  PubMed  CAS  Google Scholar 

  • Iorns E, Lord CJ, Turner N, Ashworth A (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6:556–568

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto K, Hamada H, Eguchi Y, Okamoto M (2011) Mathematical modeling of cell cycle regulation in response to DNA damage: exploring mechanisms of cell-fate determination. Biosystems 103:384–391

    Article  PubMed  CAS  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Karschau J, de Almeida C, Richard MC, Miller S, Booth IR, Grebogi C, de Moura AP (2011) A matter of life or death: modeling DNA damage and repair in bacteria. Biophys J 100:814–821

    Article  PubMed  CAS  Google Scholar 

  • Kholodenko B, Yaffe MB and Kolch W (2012) Computational approaches for analyzing information flow in biological networks. Sci Signal 5:re1

    Google Scholar 

  • Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318:1637–1640

    Article  PubMed  CAS  Google Scholar 

  • Kondo S and Perrimon N (2011) A genome-wide RNAi screen identifies core components of the G(2)-M DNA damage checkpoint. Sci Signal 4:rs1

    Google Scholar 

  • Kotelnikova E, Ivanikova N, Kalinin A, Yuryev A, Daraselia N (2010) Atlas of signaling for interpretation of microarray experiments. PLoS ONE 5:e9256

    Article  PubMed  Google Scholar 

  • Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137:609–622

    Article  PubMed  CAS  Google Scholar 

  • Kruse JJ, Svensson JP, Huigsloot M, Giphart-Gassler M, Schoonen WG, Polman JE, Jean Horbach G, van de Water B, Vrieling H (2007) A portrait of cisplatin-induced transcriptional changes in mouse embryonic stem cells reveals a dominant p53-like response. Mutat Res 617:58–70

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, MacBeath G, Yaffe MB (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149:780–794

    Article  PubMed  CAS  Google Scholar 

  • Li M, He Y, Dubois W, Wu X, Shi J and Huang J (2012) Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol Cell 46:30–42

    Google Scholar 

  • Liu W, Johnson DE (2009) Clustering and its application in multi-target prediction. Curr Opin Drug Discov Devel 12:98–107

    PubMed  CAS  Google Scholar 

  • Lord CJ, McDonald S, Swift S, Turner NC, Ashworth A (2008) A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst) 7:2010–2019

    Article  CAS  Google Scholar 

  • Lukas J, Lukas C, Bartek J (2011) More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Martin SA, Hewish M, Sims D, Lord CJ, Ashworth A (2011) Parallel high-throughput RNA interference screens identify PINK1 as a potential therapeutic target for the treatment of DNA mismatch repair-deficient cancers. Cancer Res 71:1836–1848

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166

    Article  PubMed  CAS  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  PubMed  CAS  Google Scholar 

  • Moudry P, Lukas C, Macurek L, Neumann B, Heriche JK, Pepperkok R, Ellenberg J, Hodny Z, Lukas J, Bartek J (2012) Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1. Cell Death Differ 19:798–807

    Article  PubMed  CAS  Google Scholar 

  • Nibbe RK, Chance MR (2009) Approaches to biomarkers in human colorectal cancer: looking back, to go forward. Biomark Med 3:385–396

    Article  PubMed  CAS  Google Scholar 

  • Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D’Andrea AD, Bernards R (2005) The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 17:331–339

    Article  PubMed  CAS  Google Scholar 

  • O’Connell BC, Adamson B, Lydeard JR, Sowa ME, Ciccia A, Bredemeyer AL, Schlabach M, Gygi SP, Elledge SJ, Harper JW (2010) A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability. Mol Cell 40:645–657

    Article  PubMed  Google Scholar 

  • Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein–protein interactions. J Med Genet 43:691–698

    Article  PubMed  CAS  Google Scholar 

  • Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE, Meyer T, Cimprich KA (2009) A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell 35:228–239

    Article  PubMed  CAS  Google Scholar 

  • Pines A, Kelstrup CD, Vrouwe MG, Puigvert JC, Typas D, Misovic B, de Groot A, von Stechow L, van de Water B, Danen EH, Vrieling H, Mullenders LH, Olsen JV (2011) Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells. Mol Cell Biol 31:4964–4977

    Article  PubMed  CAS  Google Scholar 

  • Piwko W, Olma MH, Held M, Bianco JN, Pedrioli PG, Hofmann K, Pasero P, Gerlich DW, Peter M (2010) RNAi-based screening identifies the Mms22L-Nfkbil2 complex as a novel regulator of DNA replication in human cells. EMBO J 29:4210–4222

    Article  PubMed  CAS  Google Scholar 

  • Pothof J, Verkaik NS, van IW, Wiemer EA, Ta VT, van der Horst GT, Jaspers NG, van Gent DC, Hoeijmakers JH, Persengiev SP (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28:2090–2099

  • Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C (2012) Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat Cell Biol 14:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G (2012) p53 dynamics control cell fate. Science 336:1440–1444

    Article  PubMed  CAS  Google Scholar 

  • Ravi D, Wiles AM, Bhavani S, Ruan J, Leder P, Bishop AJ (2009) A network of conserved damage survival pathways revealed by a genomic RNAi screen. PLoS Genet 5:e1000527

    Article  PubMed  Google Scholar 

  • Schwertman P, Lagarou A, Dekkers DH, Raams A, van der Hoek AC, Laffeber C, Hoeijmakers JH, Demmers JA, Fousteri M, Vermeulen W, Marteijn JA (2012) UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat Genet 44:598–602

    Article  PubMed  CAS  Google Scholar 

  • Sherman MH, Bassing CH, Teitell MA (2011) Regulation of cell differentiation by the DNA damage response. Trends Cell Biol 21:312–319

    Article  PubMed  CAS  Google Scholar 

  • Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, Nakada S, Ylanko J, Olivarius S, Mendez M, Oldreive C, Wildenhain J, Tagliaferro A, Pelletier L, Taubenheim N, Durandy A, Byrd PJ, Stankovic T, Taylor AM, Durocher D (2009) The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136:420–434

    Article  PubMed  CAS  Google Scholar 

  • Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204

    Article  PubMed  CAS  Google Scholar 

  • Tentner AR, Lee MJ, Ostheimer GJ, Samson LD, Lauffenburger DA, Yaffe MB (2012) Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. Mol Syst Biol 8:568

    Article  PubMed  CAS  Google Scholar 

  • Tichy ED (2011) Mechanisms maintaining genomic integrity in embryonic stem cells and induced pluripotent stem cells. Exp Biol Med (Maywood) 236:987–996

    Article  CAS  Google Scholar 

  • Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R, Rayter S, Tutt AN, Ashworth A (2008) A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 27:1368–1377

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2:908–916

    Article  PubMed  CAS  Google Scholar 

  • Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998

    Article  PubMed  CAS  Google Scholar 

  • Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190:491–500

    Article  PubMed  CAS  Google Scholar 

  • Workman CT, Mak HC, McCuine S, Tagne JB, Agarwal M, Ozier O, Begley TJ, Samson LD, Ideker T (2006) A systems approach to mapping DNA damage response pathways. Science 312:1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Zhang YW, Jones TL, Martin SE, Caplen NJ, Pommier Y (2009) Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J Biol Chem 284:18085–18095

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik H. J. Danen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Stechow, L., van de Water, B. & Danen, E.H.J. Unraveling DNA damage response-signaling networks through systems approaches. Arch Toxicol 87, 1635–1648 (2013). https://doi.org/10.1007/s00204-013-1106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1106-5

Keywords

Navigation