Skip to main content
Log in

Sulfotransferase-independent genotoxicity of illudin S and its acylfulvene derivatives in bacterial and mammalian cells

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Acylfulvenes are a class of antitumor agents derived from illudin S, a sesquiterpenoid toxin isolated from mushrooms of the genus Omphalotus. Although DNA appears to be their major target, no data concerning mutagenicity of acylfulvenes are available in the literature, and limited data have been published on illudin S. Enzyme-mediated biotransformations have been demonstrated to influence the cytotoxicity of acylfulvenes. Illudin S and some acylfulvenes [e.g., (−)-6-hydroxymethylacylfulvene (HMAF)] are allylic alcohols with potential for enhanced cytotoxicity and genotoxicity by means of metabolic sulfation. Therefore, we studied the influence of various heterologously expressed human sulfotransferases (SULTs) on biological activities of illudin S and HMAF in bacterial and mammalian cells. (−)-Acylfulvene (AF) was tested as a congener lacking an allylic hydroxyl group. We found: (1) all three compounds were mutagenic in standard Salmonella typhimurium strains TA98, TA100 and TA104; (2) they induced gene mutations (at the hypoxanthine phosphoribosyl transferase locus) and sister chromatid exchange (SCE) in Chinese hamster V79 cells; (3) these effects were practically unaffected when human SULTs were expressed in the target bacteria or mammalian cells (using SCE as the endpoint); (4) illudin S demonstrated 40–600 times higher genotoxic activities than the semisynthetic acylfulvenes studied; it was positive in the SCE test even at a concentration of 0.3 nM; (5) genotoxicity in mammalian cells was observed at substantially lower concentrations of the compounds than required for a positive result in the bacterial test (400 nM with illudin S). We conclude that illudin S, HMAF and AF are potent genotoxicants and human SULTs do not play a significant role in their bioactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AF:

(−)-Acylfulvene

HMAF:

(−)-6-Hydroxymethylacylfulvene

hprt :

Hypoxanthine phosphoribosyl transferase gene

PTGR1:

NADPH-dependent prostaglandin reductase 1

SCE:

Sister chromatid exchange

SULT:

Sulfotransferase

References

  • Anchel M, Hervey A, Robbins WJ (1950) Antibiotic substances from Basidiomycetes: VII. Clitocybe illudens. Proc Natl Acad Sci USA 36:300–305

    Article  CAS  PubMed  Google Scholar 

  • Dick RA, Kwak MK, Sutter TR, Kensler TW (2001) Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase: a new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase. J Biol Chem 276:40803–40810

    Article  CAS  PubMed  Google Scholar 

  • Dick RA, Yu X, Kensler TW (2004) NADPH alkenal/one oxidoreductase activity determines sensitivity of cancer cells to the chemotherapeutic alkylating agent irofulven. Clin Cancer Res 10:1492–1499

    Article  CAS  PubMed  Google Scholar 

  • Doehmer J, Buters JTM, Luch A, Soballa V, Baird WM, Morisson H, Stegeman JJ, Townsend AJ, Greenlee WF, Glatt HR, Seidel A, Jacob J, Greim H (1999) Molecular studies on the toxifying effects by genetically engineered cytochromes P450. Drug Metab Rev 31:423–435

    Article  CAS  PubMed  Google Scholar 

  • Glatt HR (2000) Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact 129:141–170

    Article  CAS  PubMed  Google Scholar 

  • Glatt HR (2005) Activation and inactivation of carcinogens by human sulfotransferases. In: Pacifici GM, Coughtrie MWH (eds) Human sulphotransferases. Taylor & Francis, London, pp 281–306

    Google Scholar 

  • Glatt HR, Meinl W (2004) Use of genetically manipulated Salmonella typhimurium strains to evaluate the role of sulfotransferases and acetyltransferases in nitrofen mutagenicity. Carcinogenesis 25:779–786

    Article  CAS  PubMed  Google Scholar 

  • Glatt HR, Meinl W (2005) Sulfotransferases and acetyltransferases in mutagenicity testing: technical aspects. Meth Enzymol 400:230–249

    CAS  PubMed  Google Scholar 

  • Glatt HR, Gemperlein I, Setiabudi F, Platt K-L, Oesch F (1990) Expression of xenobiotic-metabolizing enzymes in propagatable cell cultures and induction of micronuclei by 13 compounds. Mutagenesis 5:241–249

    Article  CAS  PubMed  Google Scholar 

  • Glatt HR, Piée A, Pauly K, Steinbrecher T, Schrode R, Oesch F, Seidel A (1991) Fjord- and bay-region diol-epoxides investigated on stability, SOS induction in Escherichia coli, and mutagenicity in Salmonella typhimurium and mammalian cells. Cancer Res 51:1659–1667

    CAS  PubMed  Google Scholar 

  • Glatt HR, Davis W, Meinl W, Hermersdörfer H, Venitt S, Phillips DH (1998) Rat, but not human, sulfotransferase activates a tamoxifen metabolite to produce DNA adducts and gene mutations in bacteria and mammalian cells in culture. Carcinogenesis 19:1709–1713

    Article  CAS  PubMed  Google Scholar 

  • Glatt HR, Boeing H, Engelke CEH, Kuhlow LMA, Pabel U, Pomplun D, Teubner W, Meinl W (2001) Human cytosolic sulphotransferases: genetics, characteristics, toxicological aspects. Mutat Res 482:27–40

    Article  CAS  PubMed  Google Scholar 

  • Glatt HR, Schneider H, Liu Y-G (2005) V79-hCYP2E1-hSULT1A1, a cell line for the sensitive detection of genotoxic effects induced by carbohydrate pyrolysis products and other food-borne chemicals. Mutat Res 580:41–52

    Article  CAS  PubMed  Google Scholar 

  • Glatt HR, Schneider H, Murkovic M, Monien BH, Meinl W (2012) Hydroxymethyl-substituted furans: mutagenicity in Salmonella typhimurium strains engineered for expression of various human and rodent sulphotransferases. Mutagenesis 27:41–48

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Neels JF, Yu X, Kensler TW, Peterson LA, Sturla SJ (2006) Investigating the role of stereochemistry in the activity of anticancer acylfulvenes: synthesis, reductase-mediated bioactivation, and cellular toxicity. J Med Chem 49:2593–2599

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Vaidyanathan VG, Yu X, Kensler TW, Peterson LA, Sturla SJ (2007) Depurinating acylfulvene-DNA adducts: characterizing cellular chemical reactions of a selective antitumor agent. J Am Chem Soc 129:2101–2111

    Article  CAS  PubMed  Google Scholar 

  • Jaspers NG, Raams A, Kelner MJ, Ng JM, Yamashita YM, Takeda S, McMorris TC, Hoeijmakers JH (2002) Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair (Amst) 1:1027–1038

    Article  CAS  Google Scholar 

  • Kelner MJ, McMorris TC, Beck WT, Zamora JM, Taetle R (1987) Preclinical evaluation of illudins as anticancer agents. Cancer Res 47:3186–3189

    CAS  PubMed  Google Scholar 

  • Kelner MJ, McMorris TC, Taetle R (1990) Preclinical evaluation of illudins as anticancer agents: basis for selective cytotoxicity. J Natl Cancer Inst 82:1562–1565

    Article  CAS  PubMed  Google Scholar 

  • Kelner MJ, McMorris TC, Estes L, Rutherford M, Montoya M, Goldstein J, Samson K, Starr R, Taetle R (1994) Characterization of illudin S sensitivity in DNA repair-deficient Chinese hamster cells: unusually high sensitivity of ERCC2 and ERCC3 DNA helicase-deficient mutants in comparison to other chemotherapeutic agents. Biochem Pharmacol 48:403–409

    Article  CAS  PubMed  Google Scholar 

  • Kelner MJ, McMorris TC, Montoya MA, Estes L, Uglik SF, Rutherford M, Samson KM, Bagnell RD, Taetle R (1998) Characterization of acylfulvene histiospecific toxicity in human tumor cell lines. Cancer Chemother Pharmacol 41:237–242

    Article  CAS  PubMed  Google Scholar 

  • Kelner MJ, McMorris TC, Montoya MA, Estes L, Uglik SF, Rutherford M, Samson KM, Bagnell RD, Taetle R (1999) Characterization of MGI 114 (HMAF) histiospecific toxicity in human tumor cell lines. Cancer Chemother Pharmacol 44:235–240

    Article  CAS  PubMed  Google Scholar 

  • MacDonald JR, Muscoplat CC, Dexter DL, Mangold GL, Chen SF, Kelner MJ, McMorris TC, Von Hoff DD (1997) Preclinical antitumor activity of 6-hydroxymethylacylfulvene, a semisynthetic derivative of the mushroom toxin illudin S. Cancer Res 57:279–283

    CAS  PubMed  Google Scholar 

  • Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka A, Hirosawa A, Natori S, Iwasaki S, Sofuni T, Ishidate M Jr (1989) Mutagenicity of ptaquiloside, the carcinogen in bracken, and its related illudane-type sesquiterpenes: II. Chromosomal aberration tests with cultured mammalian cells. Mutat Res 215:179–185

    Article  CAS  PubMed  Google Scholar 

  • McMorris TC (1999) Discovery and development of sesquiterpenoid derived hydroxymethylacylfulvene: a new anticancer drug. Bioorg Med Chem 7:881–886

    Article  CAS  PubMed  Google Scholar 

  • McMorris TC, Anchel M (1963) The structures of the basidiomycete metabolites illudin S and illudin M. J Am Chem Soc 81:831–832

    Article  Google Scholar 

  • McMorris TC, Anchel M (1965) Fungal metabolites: the structures of the novel sesquiterpenoids illudin-S and -M. J Am Chem Soc 87:1594–1600

    Article  CAS  PubMed  Google Scholar 

  • McMorris TC, Kelner MJ, Wang W, Moon S, Taetle R (1990) On the mechanism of toxicity of illudins: the role of glutathione. Chem Res Toxicol 3:574–579

    Article  CAS  PubMed  Google Scholar 

  • McMorris TC, Kelner MJ, Wang W, Diaz MA, Estes LA, Taetle R (1996a) Acylfulvenes, a new class of potent antitumor agents. Experientia 52:75–80

    Article  CAS  PubMed  Google Scholar 

  • McMorris TC, Kelner MJ, Wang W, Yu J, Estes LA, Taetle R (1996b) (Hydroxymethyl)acylfulvene: an illudin derivative with superior antitumor properties. J Nat Prod 59:896–899

    Article  CAS  PubMed  Google Scholar 

  • McMorris MF, Yu J, Estes LA, Kelner MJ (1997a) Reaction of antitumor hydroxymethylacylfulvene (HMAF) with thiols. Tetrahedron 53:14579–14590

    Article  CAS  Google Scholar 

  • McMorris TC, Yu J, Hu Y, Estes LA, Kelner MJ (1997b) Design and synthesis of antitumor acylfulvenes. J Org Chem 62:3015–3018

    Article  CAS  PubMed  Google Scholar 

  • McMorris TC, Yu J, Ngo HT, Wang HX, Kelner MJ (2000) Preparation and biological activity of amino acid and peptide conjugates of antitumor hydroxymethylacylfulvene. J Med Chem 43:3577–3580

    Article  CAS  PubMed  Google Scholar 

  • Meinl W, Pabel U, Osterloh-Quiroz M, Hengstler JG, Glatt HR (2006) Human sulfotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int J Cancer 118:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Nagao T, Saito K, Hirayama E, Uchikoshi K, Koyama K, Natori S, Morisaki N, Iwasaki S, Matsushima T (1989) Mutagenicity of ptaquiloside, the carcinogen in bracken, and its related illudane-type sesquiterpenes: I. Mutagenicity in Salmonella typhimurium. Mutat Res 215:173–178

    Article  CAS  PubMed  Google Scholar 

  • Neels JF, Gong J, Yu X, Sturla SJ (2007) Quantitative correlation of drug bioactivation and deoxyadenosine alkylation by acylfulvene. Chem Res Toxicol 10:1513–1519

    Article  Google Scholar 

  • Perry P, Wolff S (1974) New Giemsa method for the differential staining of sister chromatids. Nature 252:156–158

    Article  Google Scholar 

  • Pietsch KE, Neels JF, Yu X, Gong J, Sturla SJ (2011) Chemical and enzymatic reductive activation of acylfulvene to isomeric cytotoxic reactive intermediates. Chem Res Toxicol 24:2044–2054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pietsch KE, van Midwoud PM, Villalta PW, Sturla SJ (2013) Quantification of acylfulvene- and illudin S-DNA adducts in cells with variable bioactivation capacities. Chem Res Toxicol. doi:10.1021/tx300430r (Publication Date (Web): 10 Dec 2012)

  • Schobert R, Knauer S, Seibt S, Biersack B (2011) Anticancer active illudins: recent developments of a potent alkylating compound class. Curr Med Chem 18:790–807

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Inoue T, Tezuka Y, Kikuchi T (1996) Michael-type addition of illudin S, a toxic substance from Lampteromyces japonicus, with cysteine and cysteine-containing peptides in vitro. Chem Pharm Bull (Tokyo) 44:273–279

    Article  CAS  Google Scholar 

  • Tanasova M, Sturla SJ (2012) Chemistry and biology of acylfulvenes: sesquiterpene-derived antitumor agents. Chem Rev 112:3578–3610

    Article  CAS  PubMed  Google Scholar 

  • Woynarowska BA, Woynarowski JM, Herzig MC, Roberts K, Higdon AL, MacDonald JR (2000) Differential cytotoxicity and induction of apoptosis in tumor and normal cells by hydroxymethylacylfulvene (HMAF). Biochem Pharmacol 59:1217–1226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Andrea Katschak and Jutta Schwenk for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansruedi Glatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glatt, H., Pietsch, K.E., Sturla, S.J. et al. Sulfotransferase-independent genotoxicity of illudin S and its acylfulvene derivatives in bacterial and mammalian cells. Arch Toxicol 88, 161–169 (2014). https://doi.org/10.1007/s00204-013-1097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1097-2

Keywords

Navigation