Skip to main content

Advertisement

Log in

Effects of cannabinoids and related fatty acids upon the viability of P19 embryonal carcinoma cells

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Compounds acting on the cannabinoid (CB) receptors are involved in the control of cell fate, and there is an emerging consensus that CBs have anticancer effects. However, the CB-mediated effects are contradictory since some studies suggest stimulatory effects on cancer cell proliferation, and CBs have been shown to stimulate both proliferation and differentiation of other mitotic cells such as stem and progenitor cells. In this study, the concentration-dependent effects of synthetic and endogenous CBs on the viability of mouse P19 embryonal carcinoma (EC) cells have been examined by using fluorescence assays of cell membrane integrity, cell proliferation, oxidative stress, and detection of apoptosis and necrosis. All compounds examined produced a concentration-dependent decrease in cell viability in the micromolar range, with the potent CB receptor agonist HU 210 and the enantiomer HU 211 (with no CB receptor activity) being the most potent compounds examined with apparent IC50 values of 1 and 0.6 μM, respectively. The endogenous CB anandamide showed similar potency and efficacy as structurally related polyunsaturated fatty acids with no reported activity at the CB receptors. The rapid (within hours) decrease in cell viability induced by the examined CBs suggests cytocidal rather than antiproliferative effects and is dependent on the plating cell population density with the highest toxicity around 100 cells/mm2. The CB-induced cytotoxicity, which appears to involve CB receptors and the sphingomyelin–ceramide pathway, is a mixture of both apoptosis and necrosis that can be blocked by the antioxidants α-tocopherol and N-acetylcysteine. In conclusion, both synthetic and endogenous CBs produce seemingly unspecific cytotoxic effects in the P19 EC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguado T, Monory K, Palazuelos J, Stella N, Cravatt B, Lutz B, Marsicano G, Kokaia Z, Guzman M, Galve-Roperh I (2005) The endocannabinoid system drives neural progenitor proliferation. Faseb J 19:1704–1706

    PubMed  CAS  Google Scholar 

  • Bouaboula M, Hilairet S, Marchand J, Fajas L, Le Fur G, Casellas P (2005) Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur J Pharmacol 517:174–181

    Article  PubMed  CAS  Google Scholar 

  • Burkey TH, Quock RM, Consroe P, Ehlert FJ, Hosohata Y, Roeske WR, Yamamura HI (1997) Relative efficacies of cannabinoid CB1 receptor agonists in the mouse brain. Eur J Pharmacol 336:295–298

    Article  PubMed  CAS  Google Scholar 

  • Carracedo A, Gironella M, Lorente M, Garcia S, Guzman M, Velasco G, Iovanna JL (2006) Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res 66:6748–6755

    Article  PubMed  CAS  Google Scholar 

  • De Lago E, Gustafsson SB, Fernandez-Ruiz J, Nilsson J, Jacobsson SO, Fowler CJ (2006) Acyl-based anandamide uptake inhibitors cause rapid toxicity to C6 glioma cells at pharmacologically relevant concentrations. J Neurochem 99:677–688

    Article  PubMed  Google Scholar 

  • De Petrocellis L, Melck D, Palmisano A, Bisogno T, Laezza C, Bifulco M, Di Marzo V (1998) The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc Natl Acad Sci U S A 95:8375–8380

    Article  PubMed  Google Scholar 

  • Devane WA, Breuer A, Sheskin T, Jarbe TU, Eisen MS, Mechoulam R (1992a) A novel probe for the cannabinoid receptor. J Med Chem 35:2065–2069

    Article  PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992b) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  PubMed  CAS  Google Scholar 

  • Feigenbaum JJ, Bergmann F, Richmond SA, Mechoulam R, Nadler V, Kloog Y, Sokolovsky M (1989) Nonpsychotropic cannabinoid acts as a functional N-methyl-D-aspartate receptor blocker. Proc Natl Acad Sci U S A 86:9584–9587

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 48:443–450

    PubMed  CAS  Google Scholar 

  • Flygare J, Sander B (2008) The endocannabinoid system in cancer-potential therapeutic target? Semin Cancer Biol 18:176–189

    Article  PubMed  CAS  Google Scholar 

  • Flygare J, Gustafsson K, Kimby E, Christensson B, Sander B (2005) Cannabinoid receptor ligands mediate growth inhibition and cell death in mantle cell lymphoma. FEBS Lett 579:6885–6889

    Article  PubMed  CAS  Google Scholar 

  • Fride E (2008) Multiple roles for the endocannabinoid system during the earliest stages of life: pre- and postnatal development. J Neuroendocrinol 20(Suppl 1):75–81

    Article  PubMed  CAS  Google Scholar 

  • Galve-Roperh I, Sanchez C, Cortes ML, del Pulgar TG, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6:313–319

    Article  PubMed  CAS  Google Scholar 

  • Giuliano M, Calvaruso G, Pellerito O, Portanova P, Carlisi D, Vento R, Tesoriere G (2006) Anandamide-induced apoptosis in Chang liver cells involves ceramide and JNK/AP-1 pathway. Int J Mol Med 17:811–819

    PubMed  CAS  Google Scholar 

  • Godlewski G, Gothert M, Malinowska B (2003) Cannabinoid receptor-independent inhibition by cannabinoid agonists of the peripheral 5-HT3 receptor-mediated von Bezold-Jarisch reflex. Br J Pharmacol 138:767–774

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson SB, Lindgren T, Jonsson M, Jacobsson SO (2009) Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil. Cancer Chemother Pharmacol 63:691–701

    Article  PubMed  CAS  Google Scholar 

  • Guzman M (2003) Cannabinoids: potential anticancer agents. Nat Rev Cancer 3:745–755

    Article  PubMed  CAS  Google Scholar 

  • Hart S, Fischer OM, Ullrich A (2004) Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res 64:1943–1950

    Article  PubMed  CAS  Google Scholar 

  • Jacobsson SO, Rongard E, Stridh M, Tiger G, Fowler CJ (2000) Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability. Biochem Pharmacol 60:1807–1813

    Article  PubMed  CAS  Google Scholar 

  • Jacobsson SO, Wallin T, Fowler CJ (2001) Inhibition of rat C6 glioma cell proliferation by endogenous and synthetic cannabinoids. Relative involvement of cannabinoid and vanilloid receptors. J Pharmacol Exp Ther 299:951–959

    PubMed  CAS  Google Scholar 

  • Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X (2005) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 115:3104–3116

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Fu Y, Williams J, Wood J, Pandarinathan L, Avraham S, Makriyannis A, Avraham S, Avraham HK (2007) Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells. PLoS ONE 2:e641

    Article  PubMed  Google Scholar 

  • Khanolkar AD, Abadji V, Lin S, Hill WA, Taha G, Abouzid K, Meng Z, Fan P, Makriyannis A (1996) Head group analogs of arachidonylethanolamide, the endogenous cannabinoid ligand. J Med Chem 39:4515–4519

    Article  PubMed  CAS  Google Scholar 

  • Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumor cell lines by widely diverging stimuli. Cell Prolif 24:203–214

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, Lorenzon T, Bari M, Melino G, Finazzi-Agro A (2000) Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J Biol Chem 275:31938–31945

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  PubMed  CAS  Google Scholar 

  • McKallip RJ, Lombard C, Martin BR, Nagarkatti M, Nagarkatti PS (2002) Delta(9)-tetrahydrocannabinol-induced apoptosis in the thymus and spleen as a mechanism of immunosuppression in vitro and in vivo. J Pharmacol Exp Ther 302:451–465

    Article  PubMed  CAS  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  PubMed  CAS  Google Scholar 

  • Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, Kawasaki T (1995) Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun 211:396–403

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado F, Rubio-Araiz A, Garcia-Ovejero D, Williams RJ, Moore JD, Arevalo-Martin A, Gomez-Torres O, Molina-Holgado E (2007) CB2 cannabinoid receptors promote mouse neural stem cell proliferation. Eur J Neurosci 25:629–634

    Article  PubMed  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  PubMed  CAS  Google Scholar 

  • Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    PubMed  CAS  Google Scholar 

  • Plantin-Carrenard E, Bringuier A, Derappe C, Pichon J, Guillot R, Bernard M, Foglietti MJ, Feldmann G, Aubery M, Braut-Boucher F (2003) A fluorescence microplate assay using yopro-1 to measure apoptosis: application to HL60 cells subjected to oxidative stress. Cell Biol Toxicol 19:121–133

    Article  PubMed  CAS  Google Scholar 

  • Rajesh M, Mukhopadhyay P, Hasko G, Liaudet L, Mackie K, Pacher P (2010) Cannabinoid-1 receptor activation induces reactive oxygen species-dependent and -independent mitogen-activated protein kinase activation and cell death in human coronary artery endothelial cells. Br J Pharmacol 160:688–700

    Article  PubMed  CAS  Google Scholar 

  • Ramer R, Weinzierl U, Schwind B, Brune K, Hinz B (2003) Ceramide is involved in r(+)-methanandamide-induced cyclooxygenase-2 expression in human neuroglioma cells. Mol Pharmacol 64:1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Araiz A, Arevalo-Martin A, Gomez-Torres O, Navarro-Galve B, Garcia-Ovejero D, Suetterlin P, Sanchez-Heras E, Molina-Holgado E, Molina-Holgado F (2008) The endocannabinoid system modulates a transient TNF pathway that induces neural stem cell proliferation. Mol Cell Neurosci 38:374–380

    Article  PubMed  CAS  Google Scholar 

  • Rueda D, Navarro B, Martinez-Serrano A, Guzman M, Galve-Roperh I (2002) The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J Biol Chem 277:46645–46650

    Article  PubMed  CAS  Google Scholar 

  • Sanchez MG, Sanchez AM, Ruiz-Llorente L, Diaz-Laviada I (2003) Enhancement of androgen receptor expression induced by (R)-methanandamide in prostate LNCaP cells. FEBS Lett 555:561–566

    Article  PubMed  CAS  Google Scholar 

  • Skerjanc IS (1999) Cardiac and skeletal muscle development in P19 embryonal carcinoma cells. Trends Cardiovasc Med 9:139–143

    Article  PubMed  CAS  Google Scholar 

  • Steffens M, Feuerstein TJ (2004) Receptor-independent depression of DA and 5-HT uptake by cannabinoids in rat neocortex–involvement of Na(+)/K(+)-ATPase. Neurochem Int 44:529–538

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    Article  PubMed  CAS  Google Scholar 

  • Svensson AC, Johansson M, Persson E, Carchenilla MSC, Jacobsson SOP (2006) Expression of functional CB1 cannabinoid receptors in retinoic acid-differentiated P19 embryonal carcinoma cells. J Neurosci Res 83:1128–1140

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Yamaori S, Motoya E, Matsunaga T, Kimura T, Yamamoto I, Watanabe K (2008) Delta(9)-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling. Toxicology 245:141–146

    Article  PubMed  CAS  Google Scholar 

  • Taylor AH, Ang C, Bell SC, Konje JC (2007) The role of the endocannabinoid system in gametogenesis, implantation and early pregnancy. Hum Reprod Update 13:501–513

    Article  PubMed  CAS  Google Scholar 

  • Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613–623

    Article  PubMed  CAS  Google Scholar 

  • Vardakou I, Pistos C, Spiliopoulou C (2010) Spice drugs as a new trend: mode of action, identification and legislation. Toxicol Lett 197:157–162

    Article  PubMed  CAS  Google Scholar 

  • Velasco G, Galve-Roperh I, Sanchez C, Blazquez C, Haro A, Guzman M (2005) Cannabinoids and ceramide: two lipids acting hand-by-hand. Life Sci 77:1723–1731

    Article  PubMed  CAS  Google Scholar 

  • Wattenberg EV, Badria FA, Shier WT (1996) Activation of mitogen-activated protein kinase by the carcinogenic mycotoxin fumonisin B1. Biochem Biophys Res Commun 227:622–627

    Article  PubMed  CAS  Google Scholar 

  • Widmer M, Hanemann CO, Zajicek J (2008) High concentrations of cannabinoids activate apoptosis in human U373MG glioma cells. J Neurosci Res 86:3212–3220

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stig O. P. Jacobsson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2013_1051_MOESM1_ESM.pdf

Online Resource Fig. 1 HU 210 does not alter cell proliferation in P19 cells. P19 cells treated with either 0.5 % DMSO, 0.1 μM HU 210 or 10 μM HU 210 were harvested by trypsinization after 72 h, centrifuged and washed in PBS. Following a second centrifugation step, cell pellets were dissolved in 0.5 ml Vindelöv solution and incubated at 4 °C until analyzed by fluorescence activated cell sorting using a Guava flow cytometer (Millipore, Billerica, USA). HU 210, at a concentration of 0.1 μM did not affect the cell proliferation compared to untreated or solvent controls (DMSO), whereas 10 μM HU 210 induced a significant cell death (Sub/G1). Cell cycle profiles are representatives of triplicate treatments (PDF 51 kb)

204_2013_1051_MOESM2_ESM.tiff

Online Resource Fig. 2 Relationship between the cytotoxicity produced by 5 h incubation with (a) HU 210, (b) AEA and the plating density of P19 EC cells. Data are the means of five separate experiments. Linear regression analysis revealed significant deviation from zero (P = 0.0034 and P < 0.0001 for 1 µM and 10 µM HU 210, respectively, and P < 0.0001 for 10 µM and 30 µM AEA). Dashed lines indicate the 95 % confidence intervals for the regression line. (TIFF 103 kb)

204_2013_1051_MOESM3_ESM.pdf

Online Resource Fig. 3 Time-dependent effects of (a) Triton X-100, (b) 10 µM staurosporine, (c) 3 µM HU 210, and (d) 30 µM AEA on YO-PRO-1 (open circles) and propidium iodide (filled circles) fluorescence in P19 EC cells. Data are mean ± SEM of eight separate experiments. (PDF 37 kb)

204_2013_1051_MOESM4_ESM.pdf

Online Resource Fig. 4 Effects of the nitric oxide synthase inhibitor L-NAME upon the cytotoxicity in P19 EC cells induced by 5 h exposure to indicated concentration of AEA or HU 210. Data (mean ± SEM of four independent experiments) are expressed as percentage calcein fluorescence of untreated controls. Statistical treatment of data was undertaken using one-way ANOVA with Dunnett’s post hoc multiple comparison test: *P < 0.05 when the effect of the treatment is compared with the corresponding AEA or HU210 control. (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafsson, S.B., Wallenius, A., Zackrisson, H. et al. Effects of cannabinoids and related fatty acids upon the viability of P19 embryonal carcinoma cells. Arch Toxicol 87, 1939–1951 (2013). https://doi.org/10.1007/s00204-013-1051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1051-3

Keywords

Navigation