Skip to main content
Log in

Expression patterns of cell cycle proteins in the livers of rats treated with hepatocarcinogens for 28 days

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Some hepatocarcinogens induce cytomegaly, which reflects aberrant cell cycling and increased ploidy, from the early stages of administration to animals. To clarify the regulatory molecular mechanisms behind cell cycle aberrations related to the early stages of hepatocarcinogenesis, we performed gene expression analysis using microarrays and real-time reverse transcription polymerase chain reaction followed by immunohistochemical analysis in the livers of rats treated with the cytomegaly inducing hepatocarcinogens thioacetamide (TAA), fenbendazole, and methyleugenol, the cytomegaly non-inducing hepatocarcinogen piperonyl butoxide (PBO), or the non-carcinogenic hepatotoxicants acetaminophen and α-naphthyl isothiocyanate, for 28 days. Gene expression profiling showed that cell cycle-related genes, especially those of G2/M phase, were mostly upregulated after TAA treatment. Immunohistochemical analysis was performed on cell cycle proteins that were upregulated by TAA treatment and on related proteins. All hepatocarcinogens, irrespective of their cytomegaly inducing potential, increased liver cells immunoreactive for p21Cip1, which acts on cells arrested in G1 phase, and for Aurora B or Incenp, which is suggestive of an increase in a cell population with chromosomal instability caused by overexpression. PBO did not induce cell proliferation after 28-day treatment. Hepatocarcinogens that induced cell proliferation after 28-day treatment also caused an increase in p53+ cells in parallel with increased apoptotic cells, as well as increased population of cells expressing M phase-related proteins nuclear Cdc2, phospho-Histone H3, and HP1α. These results suggest that hepatocarcinogens may increase cellular populations arrested in G1 phase or showing chromosomal instability after 28-day treatment. Hepatocarcinogens that induce cell cycle facilitation may cause M phase arrest accompanied by apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANIT:

α-Naphthyl isothiocyanate

APAP:

Acetaminophen

Cdc2:

Cell division cycle 2

Cdk:

Cyclin-dependent kinase

FB:

Fenbendazole

HP1α :

Heterochromatin protein 1α

Klf6:

Kruppel-like factor 6

MEG:

Methyleugenol

NDRG1:

N-myc downstream regulated gene 1

p-Histone H3:

Phosphorylated-Histone H3

PBO:

Piperonyl butoxide

TAA:

Thioacetamide

Topo IIα :

Topoisomerase IIα

References

  • Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  PubMed  CAS  Google Scholar 

  • Adler M, Müller K, Rached E, Dekant W, Mally A (2009) Modulation of key regulators of mitosis linked to chromosomal instability is an early event in ochratoxin A carcinogenicity. Carcinogenesis 30:711–719

    Article  PubMed  CAS  Google Scholar 

  • Ago K, Saegusa Y, Nishimura J, Dewa Y, Kemmochi S, Kawai M, Harada T, Mitsumori K, Shibutani M (2010) Involvement of glycogen synthase kinase-3beta signaling and aberrant nucleocytoplasmic localization of retinoblastoma protein in tumor promotion in a rat two-stage thyroid carcinogenesis model. Exp Toxicol Pathol 62:269–280

    Article  PubMed  Google Scholar 

  • Allen DG, Pearse G, Haseman JK, Maronpot RR (2004) Prediction of rodent carcinogenesis: an evaluation of prechronic liver lesions as forecasters of liver tumors in NTP carcinogenicity studies. Toxicol Pathol 32:393–401

    Article  PubMed  CAS  Google Scholar 

  • Aune G, Stunes AK, Tingulstad S, Salvesen O, Syversen U, Torp SH (2011) The proliferation markers Ki-67/MIB-1, phosphohistone H3, and survivin may contribute in the identification of aggressive ovarian carcinomas. Int J Clin Exp Pathol 4:444–453

    PubMed  Google Scholar 

  • Becker FF (1983) Thioacetamide hepatocarcinogenesis. J Natl Cancer Inst 71:553–558

    PubMed  CAS  Google Scholar 

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999) 14–3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401:616–620

    Article  PubMed  CAS  Google Scholar 

  • Clawson GA, Blankenship LJ, Rhame JG, Wilkinson DS (1992) Nuclear enlargement induced by hepatocarcinogens alters ploidy. Cancer Res 52:1304–1308

    PubMed  CAS  Google Scholar 

  • De Koning L, Savignoni A, Boumendil C, Rehman H, Asselain B, Sastre-Garau X, Almouzni G (2009) Heterochromatin protein 1alpha: a hallmark of cell proliferation relevant to clinical oncology. EMBO Mol Med 1:178–191

    Article  PubMed  Google Scholar 

  • Dragan YP, Bidlack WR, Cohen SM, Goldsworthy TL, Hard GC, Howard PC, Riley RT, Voss KA (2001) Implications of apoptosis for toxicity, carcinogenicity, and risk assessment: fumonisin B1 as an example. Toxicol Sci 61:6–17

    Article  PubMed  CAS  Google Scholar 

  • Eastin WC (1998) The U.S. National toxicology program evaluation of transgenic mice as predictive models for identifying carcinogens. Environ Health Perspect 106:81–84

    PubMed  CAS  Google Scholar 

  • Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z (1998) Mdm2 association with p53 targets its ubiquitination. Oncogene 17:2543–2547

    Article  PubMed  CAS  Google Scholar 

  • Gotz C, Montenarh M (1995) P53 and its implication in apoptosis (review). Int J Oncol 6:1129–1135

    PubMed  CAS  Google Scholar 

  • Hamadeh HK, Jayadev S, Gaillard ET, Huang Q, Stoll R, Blanchard K, Chou J, Tucker CJ, Collins J, Maronpot R, Bushel P, Afshari CA (2004) Integration of clinical and gene expression endpoints to explore furan-mediated hepatotoxicity. Mutat Res 18:169–183

    Google Scholar 

  • Hashimoto O, Shinkawa M, Torimura T, Nakamura T, Selvendiran K, Sakamoto M, Koga H, Ueno T, Sata M (2006) Cell cycle regulation by the Wee1 inhibitor PD0166285, pyrido [2,3-d] pyrimidine, in the B16 mouse melanoma cell line. BMC Cancer 6:292

    Article  PubMed  Google Scholar 

  • Herrmann J, Lerman LO, Lerman A (2007) Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res 100:1276–1291

    Article  PubMed  CAS  Google Scholar 

  • Hirota T, Lipp JL, Tof BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180

    Article  PubMed  CAS  Google Scholar 

  • Ichijima Y, Yoshioka K, Yoshioka Y, Shinohe K, Fujimori H, Unno J, Takagi M, Goto H, Inagaki M, Mizutani S, Teraoka H (2010) DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development. PLoS ONE 5:e8821

    Article  PubMed  Google Scholar 

  • Ichimura R, Mizukami S, Takahashi M, Taniai E, Kemmochi S, Mitsumori K, Shibutani M (2010) Disruption of Smad-dependent signaling for growth of GST-P-positive lesions from the early stage in a rat two-stage hepatocarcinogenesis model. Toxicol Appl Pharmacol 246:128–140

    Article  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Kawamoto H, Koizumi H, Uchikoshi T (1997) Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses. Am J Pathol 150:15–23

    PubMed  CAS  Google Scholar 

  • Kovacevic Z, Sivagurunathan S, Mangs H, Chikhani S, Zhang D, Richardson DR (2011) The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms. Carcinogenesis 32:732–740

    Article  PubMed  CAS  Google Scholar 

  • Lim CB, Zhang D, Lee CG (2006) FAT10, a gene up-regulated in various cancers, is cell-cycle regulated. Cell Div 1:20

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( 2^{ - \Delta \Delta C_T } \) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lock EA, Hard GC (2004) Chemically induced renal tubule tumors in the laboratory rat and mouse: review of the NCI/NTP database and categorization of renal carcinogens based on mechanistic information. Crit Rev Toxicol 34:211–299

    Article  PubMed  CAS  Google Scholar 

  • Muguruma M, Unami A, Kanki M, Kuroiwa Y, Nishimura J, Dewa Y, Umemura T, Oishi Y, Mitsumori K (2007) Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats. Toxicology 236:61–75

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HG, Ravid K (2006) Tetraploidy/aneuploidy and stem cells in cancer promotion: the role of chromosome passenger proteins. J Cell Physiol 208:12–22

    Article  PubMed  CAS  Google Scholar 

  • NTP (1993) NTP Toxicology and Carcinogenesis Studies of Acetaminophen (CAS No. 103–90-2) in F344 Rats and B6C3F1 Mice (Feed Studies). Natl Toxicol Program Tech Rep Ser 394:1–274

    Google Scholar 

  • NTP (2000) Toxicology and carcinogenesis studies of methyleugenol (CAS NO. 93–15-2) in F344/N rats and B6C3F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser 491:1–412

    Google Scholar 

  • Qi G, Ogawa I, Kudo Y, Miyauchi M, Siriwardena BS, Shimamoto F, Tatsuka M, Takata T (2007) Aurora-B expression and its correlation with cell proliferation and metastasis in oral cancer. Virchows Arch 450:297–302

    Article  PubMed  CAS  Google Scholar 

  • Rees KR, Rowland GF, Ross HF (1962) The metabolism of isolated rat-liver nuclei during chemical carcinogenesis. 2. 2-Acetylamidofluorene, a-naphthyl isothiocyanate and 2′, 4′-dimethyl-4-dimethylaminoazobenzene. Biochem J 82:347–352

    PubMed  CAS  Google Scholar 

  • Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8:798–812

    Article  PubMed  CAS  Google Scholar 

  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Shirai T (1997) A medium-term rat liver bioassay as a rapid in vivo test for carcinogenic potential, a historical review of model development and summary of results from 291 tests. Toxicol Pathol 25:453–460

    Article  PubMed  CAS  Google Scholar 

  • Shoda T, Onodera H, Takeda M, Uneyama C, Imazawa T, Takegawa K, Yasuhara K, Watanabe T, Hirose M, Mitsumori K (1999) Liver tumor promoting effects of Fenbendazole in rats. Toxicol Pathol 27:553–562

    Article  PubMed  CAS  Google Scholar 

  • Takahashi O, Oishi S, Fujitani T, Tanaka T, Yoneyama M (1994) Chronic toxicity studies of piperonyl butoxide in F344 rats: induction of hepatocellular carcinoma. Fundam Appl Toxicol 22:293–303

    Article  PubMed  CAS  Google Scholar 

  • Tamano S (2010) Carcinogenesis risk assessment of chemicals using medium-term carcinogenesis bioassays. Asian Pacific J Cancer Prev 11:4–5

    Google Scholar 

  • Tanaka T, Kohno H, Murakami M, Shimada R, Kagami S (2000) Colitis-related rat colon carcinogenesis induced by 1-hydroxy-anthraquinone and methylazoxymethanol acetate. Oncol Rep 7:501–508

    PubMed  CAS  Google Scholar 

  • Taniai E, Yafune A, Hayashi H, Itahashi M, Hara-Kudo Y, Suzuki K, Mitsumori K, Shibutani M (2012) Aberrant activation of ubiquitin D at G2 phase and apoptosis by carcinogens that evoke cell proliferation after 28-day administration in rats. J Toxicol Sci 37:1093–1111

    Article  PubMed  CAS  Google Scholar 

  • Uehara T, Minowa Y, Morikawa Y, Kondo C, Maruyama T, Kato I, Nakatsu N, Igarashi Y, Ono A, Hayashi H, Mitsumori K, Yamada H, Ohno Y, Urushidani T (2011) Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol Appl Pharmacol 255:297–306

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Azuma Y, Moore D, Osheroff N, Neufeld KL (2008) Interaction between tumor suppressor adenomatous polyposis coli and topoisomerase IIα: implication for the G2/M transition. Mol Biol Cell 19:4076–4085

    Article  PubMed  CAS  Google Scholar 

  • Williams GM, Iatropoulos MJ, Jeffrey AM, Shirai T (2002) Protective effect of acetaminophen against colon cancer initiation effects of 3,2′-dimethyl-4-aminobiphenyl in rats. Eur J Cancer Prev 11:39–48

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Shigeko Suzuki for her technical assistance in preparing the histological specimens. This work was supported by Health and Labour Sciences Research Grants (Research on Food Safety) from the Ministry of Health, Labour and Welfare of Japan.

Conflict of interest

The authors disclose that there are no competing financial interests that could inappropriately influence the outcome of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Shibutani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1505 kb)

Supplementary material 2 (PDF 363 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yafune, A., Taniai, E., Morita, R. et al. Expression patterns of cell cycle proteins in the livers of rats treated with hepatocarcinogens for 28 days. Arch Toxicol 87, 1141–1153 (2013). https://doi.org/10.1007/s00204-013-1011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1011-y

Keywords

Navigation