Skip to main content
Log in

Rotenone-induced apoptosis and role of calcium: a study on Neuro-2a cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Rotenone causes cytotoxicity in astrocytic cell culture by glial activation, which is linked to free radical generation. The present study is an investigation to explore whether rotenone could also cause cellular toxicity in mouse neuroblastoma cells (Neuro-2a) under treatment similar to astroglial cells. The effect of rotenone (0.1, 1, and 10 μM) on mitochondrial dehydrogenase enzyme activity by MTT reduction assay, PI uptake, total reactive oxygen species (ROS)/superoxide levels, nitrite levels, extent of DNA damage (by comet assay), and nuclear morphological alteration by Hoechst staining was studied. Caspase-3 and Ca2+/calmodulin-dependent protein kinase II (CaMKIIα) gene expression was determined to evaluate the apoptotic cell death and calcium kinase, respectively. Calcium level was estimated fluorometrically using fura-2A stain. Rotenone decreased mitochondrial dehydrogenase enzyme activity and generated ROS, superoxide, and nitrite. Rotenone treatment impaired cell intactness and nuclear morphology as depicted by PI uptake and chromosomal condensation of Neuro-2a cells, respectively. In addition, rotenone resulted in increased intracellular Ca+2 level, caspase-3, and CaMKIIα expression. Furthermore, co-exposure of melatonin (300 μM), an antioxidant to cell culture, significantly suppressed the rotenone-induced decreased mitochondrial dehydrogenase enzyme activity, elevated ROS and RNS. However, melatonin was found ineffective to counteract rotenone-induced increased PI uptake, altered morphological changes, DNA damage, elevated Ca+2, and increased expression of caspase-3 and CaMKIIα. The study indicates that intracellular calcium rather than oxidative stress is a major factor for rotenone-induced apoptosis in neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DNA:

Deoxyribonucleic acid

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

PI:

Propidium iodide

BSA:

Bovine serum albumin

EDTA:

Ethylenediamine tetraacetic acid

PBS:

Phosphate buffer saline

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SCGE:

Single-cell gel electrophoresis

LMP:

Low melting point

References

  • Betarbet R, Sherer TB, MacKenzie G, Osuna MG, Pavanov VA, Greenamyre TJ (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Brana C, Benham C, Sundstrom L (2002) A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res Protocols 10:109–114

    Article  CAS  Google Scholar 

  • Buschini A, Alessandrini C, Martino A, Pasini L, Rizzoli V, Carlo-Stella C, Poli P, Rossi C (2002) Bleomycin genotoxicity and amifostine [WR-2721] cell protection in normal leukocytes vs. K562 tumoral cells. Biochem Pharmacol 63:967–975

    Article  PubMed  CAS  Google Scholar 

  • Cantoni O, Sestili F, Cattabeni F, Bellomo G, Pou S, Cohen M, Cerutti P (1989) Quin-2 prevents hydrogen-peroxide-induced DNA breakage and cytotoxicity. Eur J Biochem 182:209–212

    Article  PubMed  CAS  Google Scholar 

  • Capitelli C, Sereniki A, Lima MM, Reksidler AB, Tufik S, Vital MA (2008) Melatonin attenuates tyrosine hydroxylase loss and hypolocomotion in MPTP-lesioned rats. Eur J Pharmacol 594:101–108

    Article  PubMed  CAS  Google Scholar 

  • Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 192:873–882

    Article  PubMed  CAS  Google Scholar 

  • Christopher CB, Christina Y (2008) Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 8:875–879

    Article  Google Scholar 

  • Esposito E, Iacono A, Muia C, Crisafulli C, Mattace Raso G, Bramanti P, Meli R, Cuzzocrea S (2008) Signal transduction pathways involved in protective effects of melatonin in C6 glioma cells. J Pineal Res 44:78–87

    PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca+2 indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Hoglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, Cohen-Salmon C, Launay JM (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 65:89–100

    PubMed  Google Scholar 

  • James SJ, Slikker W III, Melnyk S, New E, Pogribna M, Jernigan S (2005) Thimerosal neurotoxicity is associated with glutathione depletion, protection with glutathione precursors. Neurotoxicology 26:1–8

    Article  PubMed  CAS  Google Scholar 

  • Joo WS, Jin BK, Park CW, Maeng SH, Kim YS (1998) Melatonin increases striatal dopaminergic function in 6-OHDA-lesioned rats. NeuroReport 9:4123–4126

    Article  PubMed  CAS  Google Scholar 

  • Kamat PK, Tota S, Shukla R, Ali S, Najmi AK, Nath C (2011) Mitochondrial dysfunction: a crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain. Pharmacol Biochem Behav 100:311–319

    Article  PubMed  CAS  Google Scholar 

  • Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez AJ, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Huang JY, Ching CH, Chuang JI (2008) Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. J Pineal Res 44:205–213

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Hong JS (2003) Role of microglia in inflammation mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharm Experi Therap 304:1–7

    Article  CAS  Google Scholar 

  • Nicotera P, Orrenius S (1998) The role of calcium in apoptosis. Cell Calcium 23:173–180

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Gutiérrez S, Fuentes-Broto L, García JJ, López-Vicente M, Martínez-Ballarín E, Miana-Mena FJ, Millán-Plano S, Reiter RJ (2007) Melatonin reduces protein and lipid oxidative damage induced by homocysteine in rat brain homogenates. J Cell Biochem 102:729–735

    Article  PubMed  Google Scholar 

  • Peshavariya HM, Dusting GJ, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 41:699–712

    Article  PubMed  CAS  Google Scholar 

  • Radad K, Rausch WD, Gille G (2006) Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem Int 49:379–386

    Article  PubMed  CAS  Google Scholar 

  • Ryu JK, Nagai A, Kim J, Lee MC, McLarnon JG, Kim SU (2003) Microglial activation and cell death induced by the mitochondrial toxin 3-nitropropionic acid, in vitro and in vivo studies. Neurobiol Dis 12:121–132

    Article  PubMed  CAS  Google Scholar 

  • Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    PubMed  CAS  Google Scholar 

  • Swarnkar S, Tyagi E, Agrawal R, Singh MP, Nath C (2009) A comparative study on oxidative stress induced by LPS and rotenone in homogenates of rat brain areas. Environ Toxicol Pharmacol 27:219–224

    Article  PubMed  CAS  Google Scholar 

  • Swarnkar S, Singh S, Mathur R, Patro IK, Nath C (2010a) A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular coordination in rats. Toxicology 272:17–22

    Article  PubMed  CAS  Google Scholar 

  • Swarnkar S, Singh S, Goswami P, Nath C (2010b) Evaluation of melatonin against DNA damage and nuclear condensation along with GFAP expression in rotenone treated rat C6 astrocytoma cells. In: Proceedings of Indian Academy of Neuroscience—Lucknow, India. 25–28 Nov 2010, pp 05

  • Tabuchi H, Yamamoto H, Matsumoto K, Ebihara K, Takeuchi Y, Fukunaga K, Hiraoka H, Sasaki Y, Shichiri M, Miyamoto E (2000) Regulation of insulin secretion by overexpression of Ca2+/calmodulin-dependent protein kinase II in insulinoma MIN6 cells. Endocrinology 141:2350–2360

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Cabrera J, Burkhardt S, Phillip T, Gitto E, Karbownik M, Li QD (2000) Melatonin suppresses autoxidation and hydrogen peroxide-induced lipid peroxidation in monkey brain homogenate. Neuro Endocrinol Lett 21:361–365

    PubMed  CAS  Google Scholar 

  • Wang XJ, Xu JX (2005) Possible involvement of Ca2+ signaling in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurosci Lett 376:127–132

    Article  PubMed  CAS  Google Scholar 

  • Watabe M, Nakaki T (2004) Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells. J Pharmacol Exp Ther 311:948–953

    Article  PubMed  CAS  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    PubMed  CAS  Google Scholar 

  • Wright SC, Schellenberger U, Ji L, Wang H, Larrick JW (1997) Calmodulin-dependent protein kinase II mediates signal transduction in apoptosis. FASEB J 11:843–849

    PubMed  CAS  Google Scholar 

  • Zhang T, Brown JH (2004) Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res 63:476–486

    Article  PubMed  CAS  Google Scholar 

  • Zhang HM, Zhang Y, Zhang BX (2011) The role of mitochondrial complex III in melatonin-induced ROS production in cultured mesangial cells. J Pineal Res 50:78–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. A. K. Balapure, Head, Tissue and Cell Culture Unit, CSIR-CDRI and his team for providing cells for experimentation. Author SS gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandishwar Nath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swarnkar, S., Goswami, P., Kamat, P.K. et al. Rotenone-induced apoptosis and role of calcium: a study on Neuro-2a cells. Arch Toxicol 86, 1387–1397 (2012). https://doi.org/10.1007/s00204-012-0853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0853-z

Keywords

Navigation