Skip to main content
Log in

Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression

Archives of Toxicology Aims and scope Submit manuscript

Abstract

Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almiron I, Chemes H (1988) Spermatogenic onset. II. FSH modulates mitotic activity of germ and sertoli cells in immature rats. Int J Androl 11:235–246

    Article  PubMed  CAS  Google Scholar 

  • Bakker J, Honda SI, Harada N, Balthazart J (2002) The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood. J Neurosci 22:9104–9112

    PubMed  CAS  Google Scholar 

  • Bancoft J (2005) The endocrinology of sexual arousal. J Endocrinol 186:411–427

    Article  Google Scholar 

  • Bardin CW, Catterall JF (1981) Testosterone: a major determinant of extragenital sexual dimorphism. Science 211:1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Benachour N, Seralini GE (2009) Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol 22:97–105

    Article  PubMed  CAS  Google Scholar 

  • Benachour N, Sipahutar H, Moslemi S, Gasnier C, Travert C, Seralini GE (2007) Time and dose-dependent effects of roundup on human embryonic and placental cells. Arch Environ Contam Toxicol 53:126–133

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Bradford a rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cerdeira AL, Gazziero DLP, Duke SO, Matallo MB, Spadotto CA (2007) Review of potential environmental impacts of transgenic glyphosato-resistent soybean in Brazil. J Environ Sci Health B 42:539–549

    Article  PubMed  CAS  Google Scholar 

  • Chiavegatto S, Bernardi MM, De-Souza-Spinosa H (1989) Effects of prenatal diphenhydramine administration on sexual behavior of rats. Braz J Med Biol Res 22:729–732

    PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren IL, Matuszczyk JV, Hård E (1991) Sexual orientation in male rats prenatally exposed to ethanol. Neurotoxicol Teratol 3:267–269

    Article  Google Scholar 

  • Dallegrave E, Mantese FD, Oliveira RT, Andrade AJM, Dalsenter PR, Langeloh A (2007) Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Arch Toxicol 81:665–673

    Article  PubMed  CAS  Google Scholar 

  • Felicio LF, Palermo-Neto J, Nasello AG (1989) Perinatal bromopride treatment: effects on sexual behavior of male and female rats. Behav Neural Biol 52:145–151

    Article  PubMed  CAS  Google Scholar 

  • França RL, Silva VA Jr, Chiarini-Garcia H, Garcia SK, Debeljuk L (2000) Cell proliferation and hormonal changes during postnatal development of the testis in the pig. Biol Reprod 63:1629–1636

    Article  PubMed  Google Scholar 

  • Gasnier C, Dumont C, Nora Benachour N, Clair E, Chagnon MC, Seralini GE (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262:184–191

    Article  PubMed  CAS  Google Scholar 

  • Gerardin DC, Pereira OC, Kempinas WG, Florio JC, Moreira EG, Bernardi MM (2005) Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiol Behav 84:97–104

    Article  PubMed  CAS  Google Scholar 

  • Goulart-Silva F, de Souza PB, Nunes MT (2011) T3 rapidly modulates TSHβ mRNA stability and translational rate in the pituitary of hypothyroid rats. Mol Cell Endocrinol 332:277–282

    Article  PubMed  CAS  Google Scholar 

  • Harding SM, McGinnis MY (2003) Effects of testosterone in the VMN on copulation, partner preference, and vocalizations in male rats. Horm Behav 43:327–335

    Article  PubMed  CAS  Google Scholar 

  • Harding SM, McGinnis MY (2004) Androgen receptor blockade in the MPOA or VMN: effects on male sociosexual behaviors. Physiol Behav 81:671–680

    Article  PubMed  CAS  Google Scholar 

  • Harding SM, McGinnis MY (2005) Microlesions of the ventromedial nucleus of the hypothalamus: effects on sociosexual behaviors in male rats. Behav Neurosci 119:1227–1234

    Article  PubMed  Google Scholar 

  • Harding SM, Velotta JP (2011) Comparing the relative amount of testosterone required to restore sexual arousal, motivation, and performance in male rats. Horm Behav 59:666–673

    Article  PubMed  CAS  Google Scholar 

  • Hayes WJ, Laws ER (1991) Handbook of pesticide toxicology. Academic Press, San Diego

    Google Scholar 

  • Heindel JJ, Kimberley AT (1989) Physiology of the male reproductive system: paracrine and autocrine regulation. Toxicol Pathol 17:411–445

    Article  PubMed  CAS  Google Scholar 

  • Hoepfner BA, Ward IL (1988) Prenatal and neonatal androgen exposure interact to affect sexual differentiation in female rats. Behav Neurosci 102:61–65

    Article  PubMed  CAS  Google Scholar 

  • Inoue MH, Oliveira-Jr RS, Regitano JB, Tormena CA, Tornisielo VL, Constantin J (2003) Critérios para avaliação do potencial de lixiviação dos herbicidas comercializados no Estado do Paraná. Planta Daninha 21:313–323

    Article  Google Scholar 

  • Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 104:715–740

    PubMed  Google Scholar 

  • Knudsen JF, Max SR (1980) Aromatization of androgens to estrogens mediates increased activity of glucose 6-phosphate dehydrogenase in rat levator ani muscle. Endocrinology 106:440–443

    Article  PubMed  CAS  Google Scholar 

  • Korenbrot CC, Huhtaniemi IT, Weiner RI (1977) Preputial separation as an external sign of pubertal development in the male rat. Biol Reprod 17:298–303

    Article  PubMed  CAS  Google Scholar 

  • Lenz KM, McCarthy MM (2010) Organized for sex–steroid hormones and the developing hypothalamus. Eur J Neurosci 32:2096–2104

    Article  PubMed  Google Scholar 

  • Lu FC (1995) A review of the acceptable daily intakes of pesticides assessed by WHO. Regul Toxicol Pharmacol 21:352–364

    Article  PubMed  CAS  Google Scholar 

  • MacLusky NJ, Naftolin F (1981) Sexual differentiation of the central nervous system. Science 211:1294–1302

    Article  PubMed  CAS  Google Scholar 

  • Max SR, Knudsen JF (1980) Neural and endocrine interaction in skeletal muscle. Brain Res 26:49–553

    Google Scholar 

  • Meisel RL, Sachs BD (1994) The physiology of male sexual behavior. In: Knobil E, Neill D (eds) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 3–105

    Google Scholar 

  • Mendelson SD, Pfaus JG (1989) Level searching: a new assay of sexual motivation in the male rat. Physiol Behav 45:337–341

    Article  PubMed  CAS  Google Scholar 

  • Mruk DD, Yan Cheng C (2004) Sertoli-sertoli and sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25:747–806

    Article  PubMed  CAS  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  PubMed  CAS  Google Scholar 

  • Orth JM, Gunsalus GL, Lamperti AA (1988) Evidence from sertoli-cell depleted rats indicates that spermatid number in adults depends on numbers of sertoli cells produced during perinatal development. Endocrinology 122:787–794

    Article  PubMed  CAS  Google Scholar 

  • Pereira OC, Bernardi MM, Gerardin DC (2006) Could neonatal testosterone replacement prevent alterations induced by prenatal stress in male rats? Life Sci 78:2767–2771

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pfaus JG, Kippin TE, Centeno S (2001) Conditioning and sexual behavior: a review. Horm Behav 40:291–321

    Article  PubMed  CAS  Google Scholar 

  • Phoenix HC, Goy RW, Gerall AA, Young W (1959) Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65:369–382

    Article  PubMed  CAS  Google Scholar 

  • Piffer RC, Garcia PC, Gerardin DC, Kempinas WG, Pereira OC (2009) Semen parameters, fertility and testosterone levels in male rats exposed prenatally to betamethasone. Reprod Fertil Dev 21:634–639

    Article  PubMed  CAS  Google Scholar 

  • Reznikov AG, Tarasenko LV (2007) Hormonal protection of gender-related peculiarities of testosterone metabolism in the brain of prenatally stressed rats. Neuro Endocrinol Lett 28:671–674

    PubMed  CAS  Google Scholar 

  • Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini G (2005) Differential effects of glyphosate and roundup on human placental cells. Environ Health Perspect 113:716–720

    Article  PubMed  CAS  Google Scholar 

  • Robb GW, Amann RP, Killian GJ (1978) Daily sperm production and epididymal sperm reserves of pubertal and adult rats. J Reprod Fert 54:103–107

    Article  CAS  Google Scholar 

  • Romano RM, Romano MA, Bernardi MM, Furtado PV, Oliveira CA (2010) Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Arch Toxicol 84:309–317

    Article  PubMed  CAS  Google Scholar 

  • Sachs BD (2007) A contextual definition of male sexual arousal. Horm Behav 51:569–578

    Article  PubMed  Google Scholar 

  • Saito TR, Moltz H (1986) Copulatory behavior of sexually naive and experienced male rats following removal of the vomeronasal organ. Physiol Behav 37:507–510

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y (2009) Gonadal steroid action and brain sex differentiation in the rat. J Neuroendocrinol 21:410–414

    Article  PubMed  CAS  Google Scholar 

  • Sharpe RM (2001) Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicol Lett 120:221–232

    Article  PubMed  CAS  Google Scholar 

  • Silva VA Jr, Vieira ACS, Pinto CF, Paula TAR, Palma MB, Amorim MJAAL, Amorim AA Jr, Castro RM (2006) Neonatal treatment with naloxone increases the population of sertoli cells and sperm production in adult rats. Reprod Nutr Dev 46:157–166

    Article  PubMed  Google Scholar 

  • Stoker TE, Parks LG, Gray LE, Cooper RL (2000) Endocrine-disrupting chemicals: pubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine disrupting screening and testing advisory committee. Crit Rev Toxicol 30:197–252

    Article  PubMed  CAS  Google Scholar 

  • Walsh LP, McCormick C, Martin C, Stocco DM (2000) Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression. Environ Health Perspect 108:769–776

    Article  PubMed  CAS  Google Scholar 

  • Ward IL, Weisz J (1980) Maternal stress alters plasma testosterone in fetal males. Science 207:328–329

    Article  PubMed  CAS  Google Scholar 

  • Weisz J, Ward IL (1980) Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106:306–316

    Article  PubMed  CAS  Google Scholar 

  • Wilson CA, Davies DC (2007) The control of sexual differentiation of the reproductive system and brain. Reproduction 133:331–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (151485/2010-0 to M.A.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Aurelio Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, M.A., Romano, R.M., Santos, L.D. et al. Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch Toxicol 86, 663–673 (2012). https://doi.org/10.1007/s00204-011-0788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0788-9

Keywords

Navigation