Advertisement

Archives of Toxicology

, Volume 86, Issue 1, pp 97–107 | Cite as

A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin A and citrinin

  • Maja Šegvić KlarićEmail author
  • Davor Želježić
  • Lada Rumora
  • Maja Peraica
  • Stjepan Pepeljnjak
  • Ana-Marija Domijan
Organ Toxicity and Mechanisms

Abstract

The aim of this study was to establish the involvement of calcium signalling in genotoxicity, apoptosis and necrosis evoked by ochratoxin A (OTA) and citrinin (CTN) alone or in combination in porcine kidney PK15 cells. Cell proliferation test (MTT) and trypan blue assays (24 h) demonstrated that CTN (IC50 = 73.5 ± 1.0, 75.4 ± 1.4 μM, respectively) was less toxic than OTA (IC50 = 14.0 ± 2.4, 20.5 ± 1.0 μM, respectively). To test their cytotoxic interactions, two doses of single OTA (6 and 10 μM) and CTN (30 and 50 μM) and their combinations were applied. Combined treatment showed additive cytotoxic effects. OTA and CTN induced dose-dependent increase in cytosolic calcium level (assessed with Fura-2 AM). However, combined treatment did not provoke additional increase in calcium signal. The rate of apoptosis and necrosis (DAPI-antifade staining) was significantly higher after 12 h than 24 h, while the frequencies of micronuclei (MNs) and nuclear buds (NBs) were higher after 24 h than 12 h treatment. Combined exposure resulted in apoptotic and necrotic synergism, while genotoxic effects of OTA + CTN were noted as antagonistic or additive. Co-exposure of cells to calcium chelator BAPTA-AM significantly reduced CTN and OTA + CTN-evoked apoptosis. Twenty-four hour after co-exposure to BAPTA-AM and a single OTA and CTN, MNs significantly decreased while NBs dropped significantly after co-treatment with BAPTA-AM and OTA + CTN. In conclusion, disturbance of Ca2+ homeostasis caused by OTA and CTN plays a significant role in cell genotoxicity and death.

Keywords

Nephrotoxins Genotoxicity Necrosis BAPTA-AM Mycotoxin synergism 

Notes

Acknowledgments

We wish to thank Professor Josip Madić, PhD, and Snjezana Kovač, MSc (Veterinary Faculty, University of Zagreb, Croatia), for providing the PK15 cells. Dr Andrey Y. Abramov’s help in calcium measurements is greatly acknowledged. This work was financially supported by the Ministry of Science, Education and Sports of the Republic of Croatia (Grants No. 022-0222148-2137, 022-0222148-2142, 006-0061117-1242). Ana-Marija Domijan’s stay in Department of Molecular Neuroscience, UCL Institute of Neurology was financially supported by The National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. Abdel-Wahhab MA, Abdel Azim SH, El-Nekeety AA (2008) Inula crithmoides extract protects against ochratoxin A-induced oxidative stress, clastogenic and mutagenic alterations in male rats. Toxicon 52:566–573. doi: 10.1016/j.toxicon.2008.07.006 PubMedCrossRefGoogle Scholar
  2. Aleo MD, Wyatt RD, Schnellmann RG (1991) The role of altered mitochondrial function in citrinin induced toxicity to rat renal proximal tubule suspension. Toxicol Appl Pharmacol 109:455–463PubMedCrossRefGoogle Scholar
  3. Ammar H, Michaelis G, Lisowsky T (2000) A screen of yeast respiratory mutants for sensitivity against the mycotoxin citrinin identifies the vacuolar the vacuolar ATPase as an essential factor for the toxicity mechanism. Curr Genet 37:277–284. doi: 10.1007/s002940070001 PubMedCrossRefGoogle Scholar
  4. Assaf H, Azouri H, Pallardy M (2004) Ochratoxin A induces apoptosis in human lymphocytes through down regulation of Bcl-xL. Toxicol Sci 79:335–344. doi: 10.1093/toxsci/kfh123 PubMedCrossRefGoogle Scholar
  5. Bouslimi A, Bouaziz C, Ayed-Boussema I, Hassen W, Bacha H (2008) Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and chromosome abberations in mice bone marrow cells. Toxicology 251:1–7. doi: 10.1016/j.tox.2008.06.008 PubMedCrossRefGoogle Scholar
  6. Chagas GM, Campello AP, Klüppel ML (1992) Mechanism of citrinin-induced dysfunction of mitochondria. I. Effects on respiration enzyme activities and membrane potential of renal cortical mitochondria. J Appl Toxicol 12:123–129PubMedCrossRefGoogle Scholar
  7. Chagas GM, Olivera MA, Campello AP, Klüppel ML (1995) Mechanism of citrinin -induced dysfunction of mitochondria. IV. Effect on Ca2+ transport. Cell Biochem Funct 13:53–59PubMedCrossRefGoogle Scholar
  8. Da Lozo EJ, Oliveira MB, Carnieri EG (1998) Citrinin-induced mitochondrial permeability transition. J Biochem Mol Toxicol 12:291–297CrossRefGoogle Scholar
  9. Degen GH, Gerber MM, Obrecht-Pflumio S, Dirheimer G (1997) Induction of micronuclei with ochratoxin A in ovine seminal vesicle cell cultures. Arch Toxicol 71:365–371PubMedCrossRefGoogle Scholar
  10. Didenko VV, Ngo H, Baskin DS (2003) Presence of blunt-ended DNA breaks, 3′ and 5′ overhangs in apoptosis, but only 5′ overhangs in early necrosis. Am J Pathol 162:1571–1578PubMedCrossRefGoogle Scholar
  11. Dönmez-Altuntas H, Dumlupinar G, Imamoglu N, Hamurcu Z, Liman BC (2007) Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. J Appl Toxicol 27:337–341. doi: 10.1002/jat.1209 PubMedCrossRefGoogle Scholar
  12. Dopp E, Müller J, Hahnel C, Schiffmann D (1999) Induction of genotoxic effects and modulation of the intracellular calcium level in Syrian Hamster Embryo (SHE) fibroblasts caused by ochratoxin A. Food Chem Toxicol 37:713–721PubMedCrossRefGoogle Scholar
  13. Eder S, Benesic A, Freudinger R, Engert J, Schwerdt G, Drumm K, Gekle M (2000) Nephritogenic ochratoxin A interferes with mitochondrial function and pH homeostasis in immortalized human kidney epithelial cells. Pflugers Arch 440:521–529. doi: 10.1007/s004240000321 PubMedGoogle Scholar
  14. Ehrlich V, Darroudi F, Uhl M, Steinkellner H, Gann M, Majer BJ, Eisenbauer M, Knasmueller S (2002) Genotoxic effects of ochratoxin A in human-derived hepatoma (HepG2) cells. Food Chem Toxicol 40:1085–1090. doi: 10.1016/S0278-6915(02)00045-5 Google Scholar
  15. Fenech M, Crott JW (2002) Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes-evidence for breakage-fusion-bridge cycles in cytokinesis-block micronucleus assay. Mutat Res 504:131–136. doi: 10.1016/S0027-5107(02)00086-6 PubMedCrossRefGoogle Scholar
  16. Föllmann W, Lebrun S, Kullik B, Koch M, Römer C, Golka K (2000) Cytotoxicity of ochratoxin A and citrinin in different cell types in vitro. Mycot Res 16:123–126CrossRefGoogle Scholar
  17. Golli EE, Hassen W, Bouslimi A, Bouaziz C, Ladjimi MM, Bacha H (2006) Induction of Hsp 70 in Vero cells in response to mycotoxins. Cytoprotection by sub-lethal heat shock and by Vitamin E. Toxicol Lett 166:122–130. doi: 10.1016/j.toxlet.2006.06.004 PubMedCrossRefGoogle Scholar
  18. Grosse Y, Baudrimont I, Castegnaro M, Betbeder AM, Creppy EE, Dirheimer G, Pfohl-Leszkowicz A (1995) Formation of ochratoxin A metabolites and DNA-adducts in monkey kidney. Chem Biol Interact 95:175–187. doi: 10.1016/0009-2797(94)03359-5 Google Scholar
  19. Heussner AH, Dietrich DR, O’Brien E (2006) In vitro investigation of individual and combined cytotoxic effects of ochratoxin A and other selected mycotoxins on renal cells. Toxicol In Vitro 20:332–341. doi: 10.1016/j.tiv.2005.08.003 PubMedCrossRefGoogle Scholar
  20. IARC (1986) Some naturally occurring and synthetic food components. Coumarins and ultraviolet radiation. IARC Monogr Eval Carcinog Risk Chem Hum 40:14–15Google Scholar
  21. IARC (1993) Some naturally occurring substances: heterocyclic aromatic amines and mycotoxins. IARC Monogr Eval Carcinog Risk Chem Hum 56:397–444Google Scholar
  22. IPCS International Programme on Chemical Safety (2001) Safety evaluation of certain mycotoxins in food. WHO Food Addit Ser 47:103–415Google Scholar
  23. Jeswal P (1996) Citrinin-induced chromosomal abnormalities in the bone marrow cells of Mus musculus. Cytobios 86:29–33PubMedGoogle Scholar
  24. Kamp HG, Eisenbrand G, Schlatter J, Würth K, Janzowski C (2005) Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells. Toxicology 206:413–425. doi: 10.1016/j.tox.2004.08.004 Google Scholar
  25. Kogika MM, Hagiwara MK, Mirandola RM (1993) Experimental citrinin nephrotoxicosis in dogs: renal function evaluation. Vet Hum Toxicol 35:136–140PubMedGoogle Scholar
  26. Manderville RA, Pfohl-Leszkowic A (2008) Bioactivation and DNA adduction as a rationale for ochratoxin A carcinogenesis. World Mycotoxin J 1:357–367. doi: 10.3920/WMJ2008.x039 CrossRefGoogle Scholar
  27. Manolova Y, Manolov G, Parvanova L, Petkova-Bocharova T, Castegnaro M, Chernozemsky IN (1990) Induction of characteristic chromosomal aberrations, particularly X-trisomy, in cultured human lymphocytes treated by ochratoxin A, a mycotoxin implicated in Balkan endemic nephropathy. Mutat Res 231:143–149Google Scholar
  28. Mantle P, Faucet-Marquis V, Manderville R, Sciqualli B, Pfohl-Leszkowicz A (2010) Structures of covalent adducts between DNA and ochratoxin A: a new factor in debate about genotoxicity and human risk assessment. Chem Res Toxicol 23:89–98. doi: 10.1021/tx900295a PubMedCrossRefGoogle Scholar
  29. Marin-Kuan M, Cavin C, Delatour T, Schilter B (2008) Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms. Toxicon 52:195–202. doi: 10.1016/j.toxicon.2008.04.166 PubMedCrossRefGoogle Scholar
  30. Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043. doi: 10.1038/ncb1203-1041 PubMedCrossRefGoogle Scholar
  31. Müller G, Rosner H, Rohrmann B, Erler W, Geschwend G, Gräfe U, Burkert B, Möller U, Diller R, Sachse K, Köhler H (2003) Effects of the mycotoxin ochratoxin A and some of its metabolites on the human cell line THP-1. Toxicology 148:69–82. doi: 10.1016/S0300-483X(02)00593-0 CrossRefGoogle Scholar
  32. Petkova-Bocharova T, Castegnaro M, Michelon J, Maru V (1991) Ochratoxin A and other mycotoxins in cereals from an area of Balkan endemic nephropathy and urinary tract tumours in Bulgaria. In: Castegnaro M, Pleština R, Driheimer G, Chernozemsky IN, Bartsch H (eds) Mycotoxiny, endemic nephropathy and urinary tract tumours, vol 115. IARC Scientific Publications, Lyon, pp 83–87Google Scholar
  33. Pfeiffer E, Groβ K, Metzler M (1998) Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin. Carcinogenesis 19:1313–1318PubMedCrossRefGoogle Scholar
  34. Pfohl-Leszkowicz A (2009) Ochratoxin A and aristolochic acid in the nephropathies and associated urothelial tract tumours development. Arh Hig Rada Toksikol 60:465–483. doi: 10.2478/10004-1254-60-2009-2000 PubMedCrossRefGoogle Scholar
  35. Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99. doi: 10.1002/mnfr.200600137 PubMedCrossRefGoogle Scholar
  36. Pfohl-Leszkowicz A, Tozlovanu M, Manderville R, Peraica M, Castegnaro M, Stefanovic V (2007) New molecular and field evidences for the implication of mycotoxins but not aristolochic acid in human nephropathy and urinary tract tumor. Mol Nutr Food Res 51:1131–1146. doi: 10.1002/mnfr.200700045 PubMedCrossRefGoogle Scholar
  37. Pfohl-Leszkowicz A, Molinié A, Tozlovanu M, Manderville RA (2008) Combined toxic effects of ochratoxin A and citrinin, in vitro and in vivo. In: Siantar DP, Trucksess MW, Scott PM, Herman EM (eds) Food contaminants, mycotoxins and food allergen. American Chemical Society, Washington DC, pp 56–80Google Scholar
  38. Rahimtula AD, Chong X (1991) Alterations in calcium homeostasis as a possible cause of ochratoxin A nephrotoxicity. In: Castegnaro M, Pleština R, Driheimer G, Chernozemsky IN, Bartsch H (eds) Mycotoxiny, endemic nephropathy and urinary tract tumours (IARC Scientific Publications No. 115). IARC Press, Lyon, pp 207–214Google Scholar
  39. Ribeiro SM, Chagas GM, Campello AP, Kluppel ML (1997) Mechanism of citrinin-induced dysfunction of mitochondria V. Effect on the homeostasis of the reactive oxygen species. Cell Biochem Funct 15:203–209PubMedCrossRefGoogle Scholar
  40. Schwerdt G, Freudinger R, Schuster C, Silbernagl S, Gekle M (2004) Inhibition of mitochondria and extracellular acidification enhance ochratoxin A-induced apoptosis in renal collecting duct-derived MDCK-C7 cells. Cell Physiol Biochem 14:47–56. doi: 10.1159/000076926 PubMedCrossRefGoogle Scholar
  41. Šegvić Klarić M, Pepeljnjak S, Rozgaj R (2008) Genotoxicity of fumonisin B1, beauvericin and ochratoxin A in porcine kidney PK15 cells: effects of individual and combined treatment. Croat Chem Acta 81:139–146Google Scholar
  42. Šegvić Klarić M, Daraboš D, Rozgaj R, Kašuba V, Pepeljnjak S (2010) Beauvericin and ochratoxin A genotoxicity evaluated using the alkaline comet assay: single and combined genotoxic action. Arch Toxicol 84:641–650. doi: 10.1007/s00204-010-0535-7 CrossRefGoogle Scholar
  43. Speijers GJA, Speijers MHM (2004) Combined toxic effects of mycotoxins. Toxicol Lett 153:91–98. doi: 10.1016/j.toxlet.2004.04.046 PubMedCrossRefGoogle Scholar
  44. Thust R, Kneist S (1979) Activity of citrinin metabolized by rat and human microsome fraction in clastogenicity and SCE assay on Chinese hamster V79-E cells. Mutat Res 67:321–330PubMedCrossRefGoogle Scholar
  45. Vrabcheva T, Usleber E, Dietrich R, Maärtlbauer E (2000) Co-occurrence of ochratoxin A and citrinin in cereals from Bulgarian villages with a history of Balkan endemic nephropathy. J Agric Food Chem 48:2483–2488. doi: 10.1021/jf990891y PubMedCrossRefGoogle Scholar
  46. Weber F, Freudinger R, Schwerdt G, Gekle M (2005) A rapid screening method to test apoptotic synergisms of ochratoxin A with other nephrotoxic substances. Toxicol In Vitro 19:135–143. doi: 10.1016/j.tiv.2004.08.002 PubMedCrossRefGoogle Scholar
  47. Würgler FE, Friederich U, Schlatter J (1991) Lack of mutagenicity of ochratoxin Aand B, citrinin, patulin and cnestine in Salmonella typhimurium TA 102. Mutat Res 261:209–216PubMedCrossRefGoogle Scholar
  48. Yu F-Y, Liao Y-C, Chang C-H, Liu B-H (2006) Citrinin induces apoptosis in HL-60 cells via activation of the mitochondrial pathway. Toxicol Lett 161:143–151. doi: 101016/j.toxlet.2005.08.009 PubMedCrossRefGoogle Scholar
  49. Želježić D, Domijan A-M, Peraica M (2006) DNA damage by ochratoxin A in rat kidney assessed by the alkaline comet assay. Braz J Med Biol Res 39:1563–1568. doi: 10.1590/S0100-879X2006005000029 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Maja Šegvić Klarić
    • 1
    Email author
  • Davor Želježić
    • 2
  • Lada Rumora
    • 3
  • Maja Peraica
    • 4
  • Stjepan Pepeljnjak
    • 1
  • Ana-Marija Domijan
    • 5
    • 6
  1. 1.Department of Microbiology, Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
  2. 2.Mutagenesis Unit, Institute of Medical Research and Occupational HealthZagrebCroatia
  3. 3.Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
  4. 4.Toxycology Unit, Institute of Medical Research and Occupational HealthZagrebCroatia
  5. 5.Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
  6. 6.Department of Pharmaceutical Botany, Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia

Personalised recommendations