Skip to main content
Log in

In vivo assessment of antiemetic drugs and mechanism of lycorine-induced nausea and emesis

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Lycorine is the main alkaloid of many Amaryllidaceae and known to cause poisoning with still unknown mechanisms. Longer lasting toxicological core symptoms of nausea and emesis may become a burden for human and animal patients and may result in substantial loss of water and electrolytes. To optimise the only empirical symptomatic antiemetic drug treatment at present, it is important to elucidate the causative involved targets of lycorine-induced emesis. Therefore, in the current study, we have tested the actions of a various antiemetic drugs with selective receptor affinities on lycorine-induced nausea and emesis in vivo in dogs. Beagle dogs were pre-treated in a saline vehicle-controlled crossover and random design with diphenhydramine, maropitant, metoclopramide, ondansetron or scopolamine prior lycorine administration (2 mg/kg subcutaneously). In vivo effects were assessed by a scoring system for nausea and emesis as well as by the number and lag time of emetic events for at least 3 h. Moreover, plasma pharmacokinetic analysis was carried out for ondansetron before and after lycorine injection. The data show that histaminergic (H1), muscarinic and dopaminergic (D2) receptors are presumably not involved in lycorine-induced emetic effects. While ondansetron significantly reduced the number of emetic events, lycorine-induced emesis was completely blocked by maropitant. Only ondansetron also significantly decreased the level of nausea and was able to prolong the lag time until onset of emesis suggesting a preferential participation of 5-HT3 receptors in lycorine-induced nausea. Thus, it is the first in vivo report evidencing that predominantly neurokinin-1 (NK1) and to a lesser extent 5-hydroxytryptamine 3 (5-HT3) receptors are involved in lycorine-induced emesis facilitating a target-oriented therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beleslin DB, Stefanović-Denić K, Samardžić R (1986) Comparative behavioural effects of anticholinergic agents in cats: psychomotor stimulation and aggression. Pharmacol Biochem Behav 24:581–586

    Article  PubMed  CAS  Google Scholar 

  • Bonner TI (1989) New subtypes of muscarinic acetylcholine receptors. Trends Pharmacol Sci 10(Suppl):11–15

    Google Scholar 

  • Campbell A (2000) Daffodil. In: Campbell A, Chapman M (eds) Handbook of poisoning in cats and dogs. Blackwell, Oxford, pp 116–118

    Chapter  Google Scholar 

  • De la Puente-Redondo VA, Tilt N, Rowan TG, Clemence RG (2007) Efficacy of maropitant for treatment and prevention of emesis caused by intravenous infusion of cisplatin in dogs. Am J Vet Res 68:48–56

    Article  Google Scholar 

  • Fennell CW, Van Staden J (2001) Crinum species in traditional and modern medicine. J Ethnopharmacol 78:15–26

    Article  PubMed  CAS  Google Scholar 

  • Food and Drug Administration (2007) Freedom of information summary. NADA, Silver Spring, MD, pp 141–263

  • Frohne D, Pfänder HJ (2004) Amaryllidaceae. In: Frohne D, Pfänder HJ (eds) Giftpflanzen. Ein Handbuch für Apotheker, Ärzte, Toxikologen und Biologen, 5th edn. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, pp 33–35

    Google Scholar 

  • Golding JF, Stott JRR (1997) Comparison of the effects of a selective muscarinic receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and heart rate. Br J Clin Pharmacol 43:633–637

    Article  PubMed  CAS  Google Scholar 

  • Horn CC (2007) Is there a need to identify new anti-emetic drugs? Drug Discov Today Ther Strateg 4:183–187

    Article  PubMed  Google Scholar 

  • Jaspersen-Schib R (1970) Toxische Amaryllidaceae. Pharm Acta Helv 45:424–433

    PubMed  CAS  Google Scholar 

  • Jordan K, Schmoll HJ, Aapro MS (2007) Comparative activity of antiemetic drugs. Crit Rev Oncol Hematol 61:162–175

    Article  PubMed  Google Scholar 

  • Junko I, Akiko T, Yumiko K, Noiyoshi O (1994) Poisoning by lycoris radiata plants. Pharm Mon (Gekkan Yakuji) 36:855–857

    Google Scholar 

  • Kamimura H (2006) Genetic polymorphism of cytochrome P450s in beagles: possible influence of CYP1A2 deficiency on toxicological evaluations. Arch Toxicol 80:732–738

    Article  PubMed  CAS  Google Scholar 

  • King GL (1990) Animal models in the study of vomiting. Can J Physiol Pharmacol 68:260–268

    Article  PubMed  CAS  Google Scholar 

  • Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 34:1307–1350

    Google Scholar 

  • Krenzelok EP, Mrvos R, Jacobsen TD (2002) Contrary to the literature, vomiting is not a common manifestation associated with plant exposures. Vet Hum Toxicol 44:298–300

    Google Scholar 

  • Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krügel U, Regenthal R (2011) Dose-dependent emetic effects of the amaryllidaceous alkaloid lycorine in beagle dogs. Toxicon 57:117–124

    Article  PubMed  CAS  Google Scholar 

  • Larson EW, Pfenning MA, Richelson E (1991) Selectivity of antimuscarinic compounds for muscarinic receptors of human brain and heart. Psychopharmacology (Berl) 102:162–165

    Article  Google Scholar 

  • LeGrand SB, Walsh D (2010) Scopolamine for cancer-related nausea and vomiting. J Pain Symptom Manag 40:136–141

    Article  Google Scholar 

  • McNulty J, Nair JJ, Bastida J, Pandey S, Griffin C (2009) Structure-activity studies on the lycorine pharmacophore: a potent inducer of apoptosis in human leukaemia cells. Phytochemistry 70:913–919

    Article  PubMed  CAS  Google Scholar 

  • Morishima K (1897) Chemische und pharmakologische Untersuchungen über die Alkaloide der Lycoris radiata Herb. Arch Exp Path Pharmacol 40:221–240

    Article  Google Scholar 

  • Mrvos R, Krenzlok EP, Jacobsen TD (2001) Toxidromes associated with the most common plant ingestions. Vet Hum Toxicol 43:366–369

    PubMed  CAS  Google Scholar 

  • Percie du Sert N, Rudd JA, Moss R, Andrews PL (2009) The delayed phase of cisplatin-induced emesis is mediated by the area postrema and not the abdominal visceral innervation in the ferret. Neurosci Lett 465(1):16–20

    Article  PubMed  CAS  Google Scholar 

  • Plumb DC (2008) Plumb’s veterinary drug handbook, 6th edn. Ames, Iowa

    Google Scholar 

  • Sanger GJ, Andrews PLR (2001) Emesis. In: Farthing MJG, Ballinger AB (eds) Drug therapy for gastrointestinal and liver disease. Martin Dunitz Ltd, London, pp 45–61

    Google Scholar 

  • Sanger GJ, Andrews PLR (2006) Treatment of nausea and vomiting: gaps in our knowledge. Auton Neurosci 129:3–16

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CA, van Deemter L (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524

    Article  PubMed  CAS  Google Scholar 

  • Scuderi PE (2003) Pharmacology of antiemetics. Int Anesthesiol Clin 41:41–66

    Article  PubMed  Google Scholar 

  • Simpson KH, Murphy P, Colthup PV, Whelan P (1992) Concentration of ondansetron in cerebrospinal fluid following oral dosing volunteers. Psychopharmacology 109:497–498

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kurosawa S, Whiley JW, Owyang C (1991) Mechanism for the gastrokinetic action of domperidone. In vitro studies in guinea pigs. Gastroenterology 101:703–710

    PubMed  CAS  Google Scholar 

  • Ungemach FR (2006) Scopolamin. In: Löscher W, Ungemach FR, Kroker R (eds) Pharmakotherapie bei Haus- und Nutztieren, 8th edn. Enke, Stuttgart, p 213

    Google Scholar 

  • Webster CRL (2005) Clinical pharmacology. Quick look series in veterinarian medicine. Teton NewMedia, Jackson

    Google Scholar 

  • Yamamoto C, Murakami H, Koyabu N, Takanaga H, Matsuo H, Uchiumi T, Kuwano M, Naito M, Tsuruo T, Ohtani H, Sawada Y (2002) Contribution of P-glycoprotein to efflux of ramosetron, a 5-HT3 receptor antagonist, across the blood-brain barrier. J Pharm Pharmacol 54:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Suh JH, Lee MG (2010) Pharmacokinetic interaction between tamoxifen and ondansetron in rats: non-competetive (hepatic) ans competitive (intestinal) inhibition of tamoxifen metabolism by ondansetron via CYP2D subfamiliy and 3A1/2. Cancer Chemother Pharmacol 65:407–418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the skilful technical assistance of Ina Hochheim, Katja Sommer and Ingrid Lorenz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Regenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretzing, S., Abraham, G., Seiwert, B. et al. In vivo assessment of antiemetic drugs and mechanism of lycorine-induced nausea and emesis. Arch Toxicol 85, 1565–1573 (2011). https://doi.org/10.1007/s00204-011-0719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0719-9

Keywords

Navigation