Skip to main content
Log in

Analysis of arsenic metabolites in HepG2 and AS3MT-transfected cells

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

It has been suggested that arsenic (+3 oxidation state) methyltransferase (AS3MT) plays a critical role in methylation of arsenic, and that arsenic–glutathione conjugate is a substrate for AS3MT-catalyzed methylation of arsenic. However, the mechanism of arsenic methylation in cells is not fully understood. Here, we have constructed T-REx-CHO-hAS3MTtr cells that transiently overexpress human AS3MT in response to tetracycline. The decreases in cell viability after exposure to sodium arsenite were greater in tetracycline-treated cells (tet(+) cells) than in untreated cells (tet(−) cells). Concentration of total cellular arsenic was significantly higher in tet(+) cells than in tet(−) cells. Speciation analyses of arsenic metabolites in whole cell lysates and cell culture medium were performed using both HepG2 cells and T-REx-CHO-hAS3MTtr cells. Speciation analyses of arsenic metabolites in lysates of T-REx-CHO-hAS3MTtr cells revealed that dimethylated arsenicals were the predominant arsenic metabolites in tet(+) cells, while methylated metabolites were not found in tet(−) cells. In contrast, less amount of methylated arsenic metabolites were found in the HepG2 cell lysates, and monomethylated trivalent arsenicals were the predominant methylated arsenic metabolites. Arsenate was found in the culture medium after 24 h culture with arsenite. A larger amount of arsenate was found in the culture medium of tet(+) or tet(−) cells compared to HepG2 cells. These findings indicated that AS3MT expression enhanced the cytotoxic effect of arsenite in tet(+) cells because these cells accumulated more arsenic metabolites than did the tet(−) cells, and accordingly, the tet(+) cells were more susceptible to arsenic than were the tet(−) cells. Oxidation–reduction of arsenic may be implicated in the toxic effects of arsenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37:397–419

    Article  PubMed  CAS  Google Scholar 

  • Aposhian HV, Aposhian MM (2006) Arsenic toxicology: five questions. Chem Res Toxicol 19:1–15

    Article  PubMed  CAS  Google Scholar 

  • Aposhian HV, Gurzau ES, Le XC, Gurzau A, Healy SM, Lu X, Ma M, Yip L, Zakharyan RA, Maiorino RM, Dart RC, Tircus MG, Gonzalez-Ramirez D, Morgan DL, Avram D, Aposhian MM (2000) Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chem Res Toxicol 13:693–697

    Article  PubMed  CAS  Google Scholar 

  • Aposhian HV, Zakharyan RA, Avram MD, Kopplin MJ, Wollenberg ML (2003) Oxidation and detoxification of trivalent arsenic species. Toxicol Appl Pharmacol 193:1–8

    Article  PubMed  CAS  Google Scholar 

  • Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML (2004) A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol 198:327–335

    Article  PubMed  Google Scholar 

  • Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 27:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Bates MN, Smith AH, Hopenhayn-Rich C (1992) Arsenic ingestion and internal cancers: a review. Am J Epidemiol 135:462–476

    PubMed  CAS  Google Scholar 

  • Buchet JP, Lauwerys R (1985) Study of inorganic arsenic methylation by rat liver in vitro: relevance for the interpretation of observations in man. Arch Toxicol 57:125–129

    Article  PubMed  CAS  Google Scholar 

  • Buchet JP, Lauwerys R (1987) Study of factors influencing the in vivo methylation of inorganic arsenic in rats. Toxicol Appl Pharmacol 91:65–74

    Article  PubMed  CAS  Google Scholar 

  • Buchet JP, Lauwerys R (1988) Role of thiols in the in vitro methylation of inorganic arsenic by rat liver cytosol. Biochem Pharmacol 37:3149–3153

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Chen CW, Wu MM, Kuo TL (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66:888–892

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88:1052–1061

    PubMed  CAS  Google Scholar 

  • Conrad ME (1999) Treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 340:1043–1045

    Article  PubMed  CAS  Google Scholar 

  • Crecelius EA (1977) Changes in the chemical speciation of arsenic following ingestion by man. Environ Health Perspect 19:147–150

    PubMed  CAS  Google Scholar 

  • Del Razo LM, Styblo M, Cullen WR, Thomas DJ (2001) Determination of trivalent methylated arsenicals in biological matrices. Toxicol Appl Pharmacol 174:282–293

    Article  PubMed  CAS  Google Scholar 

  • Drobna Z, Waters SB, Walton FS, LeCluyse EL, Thomas DJ, Styblo M (2004) Interindividual variation in the metabolism of arsenic in cultured primary human hepatocytes. Toxicol Appl Pharmacol 201:166–177

    Article  PubMed  CAS  Google Scholar 

  • Drobna Z, Waters SB, Devesa V, Harmon AW, Thomas DJ, Styblo M (2005) Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase. Toxicol Appl Pharmacol 207:147–159

    Article  PubMed  CAS  Google Scholar 

  • Drobna Z, Walton FS, Harmon AW, Thomas DJ, Styblo M (2010) Interspecies differences in metabolism of arsenic by cultured primary hepatocytes. Toxicol Appl Pharmacol 245:47–56

    Article  PubMed  CAS  Google Scholar 

  • Gallagher RE (1998) Arsenic–new life for an old potion. N Engl J Med 339:1389–1391

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79:183–191

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Zavala A, Matousek T, Drobna Z, Paul DS, Walton F, Adair BM, Jiri D, Thomas DJ, Styblo M (2008) Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer). J Anal At Spectrom 23:342–351

    Article  PubMed  CAS  Google Scholar 

  • Hirano S, Kobayashi Y (2006) Cytotoxic effects of S-(dimethylarsino)-glutathione: a putative intermediate metabolite of inorganic arsenicals. Toxicology 227:45–52

    Article  PubMed  CAS  Google Scholar 

  • Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A (2004) The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicol Appl Pharmacol 198:458–467

    Article  PubMed  CAS  Google Scholar 

  • IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum Suppl 7:1–440

    Google Scholar 

  • IARC (2004) Some drinking-water disinfectants and contaminants, including arsenic. Monographs on chloramine, chloral and chloral hydrate, dichloroacetic acid, trichloroacetic acid and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone. IARC Monogr Eval Carcinog Risks Hum 84:269–477

    Google Scholar 

  • Kobayashi Y, Hayakawa T, Hirano S (2007) Expression and activity of arsenic methyltransferase Cyt19 in rat tissues. Environ Toxicol Pharmacol 23:115–120

    Article  CAS  Google Scholar 

  • Le XC, Ma M, Cullen WR, Aposhian HV, Lu X, Zheng B (2000) Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine. Environ Health Perspect 108:1015–1018

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Del Razo LM, Styblo M, Wang C, Cullen WR, Thomas DJ (2001) Arsenicals inhibit thioredoxin reductase in cultured rat hepatocytes. Chem Res Toxicol 14:305–311

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ (2002) A novel S-adenosyl-l-methionine: arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem 277:10795–10803

    Article  PubMed  CAS  Google Scholar 

  • Lindberg AL, Kumar R, Goessler W, Thirumaran R, Gurzau E, Koppova K, Rudnai P, Leonardi G, Fletcher T, Vahter M (2007) Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ Health Perspect 115:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Chen H, Miller DS, Saavedra JE, Keefer LK, Johnson DR, Klaassen CD, Waalkes MP (2001) Overexpression of glutathione S-transferase II and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol 60:302–309

    PubMed  CAS  Google Scholar 

  • Look AT (1998) Arsenic and apoptosis in the treatment of acute promyelocytic leukemia. J Natl Cancer Inst 90:86–88

    Article  PubMed  CAS  Google Scholar 

  • Mervis J (1996) Ancient remedy performs new tricks. Science 273:578

    Article  PubMed  CAS  Google Scholar 

  • Mizumura A, Watanabe T, Kobayashi Y, Hirano S (2010) Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells. Toxicol Appl Pharmacol 242:119–125

    Article  PubMed  CAS  Google Scholar 

  • Naranmandura H, Suzuki N, Suzuki KT (2006) Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol 19:1010–1018

    Article  PubMed  CAS  Google Scholar 

  • Petrick JS, Jagadish B, Mash EA, Aposhian HV (2001) Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 14:651–656

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Kojima C, Kobayashi Y, Hirano S, Sakurai MH, Waalkes MP, Himeno S (2006) Toxicity of a trivalent organic arsenic compound, dimethylarsinous glutathione in a rat liver cell line (TRL 1215). Br J Pharmacol 149:888–897

    Article  PubMed  CAS  Google Scholar 

  • Schlawicke Engstrom K, Broberg K, Concha G, Nermell B, Warholm M, Vahter M (2007) Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ Health Perspect 115:599–605

    Article  PubMed  Google Scholar 

  • Shraim A, Cui X, Li S, Ng JC, Wang J, Jin Y, Liu Y, Guo L, Li D, Wang S, Zhang R, Hirano S (2003) Arsenic speciation in the urine and hair of individuals exposed to airborne arsenic through coal-burning in Guizhou, PR China. Toxicol Lett 137:35–48

    Article  PubMed  CAS  Google Scholar 

  • Slack JL, Rusiniak ME (2000) Current issues in the management of acute promyelocytic leukemia. Ann Hematol 79:227–238

    Article  PubMed  CAS  Google Scholar 

  • Smith TJ, Crecelius EA, Reading JC (1977) Airborne arsenic exposure and excretion of methylated arsenic compounds. Environ Health Perspect 19:89–93

    PubMed  CAS  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259–267

    Article  PubMed  CAS  Google Scholar 

  • Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP Jr (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Styblo M, Thomas DJ (1997) Binding of arsenicals to proteins in an in vitro methylation system. Toxicol Appl Pharmacol 147:1–8

    Article  PubMed  CAS  Google Scholar 

  • Styblo M, Delnomdedieu M, Thomas DJ (1996) Mono- and dimethylation of arsenic in rat liver cytosol in vitro. Chem Biol Interact 99:147–164

    Article  PubMed  CAS  Google Scholar 

  • Styblo M, Del Razo LM, LeCluyse EL, Hamilton GA, Wang C, Cullen WR, Thomas DJ (1999) Metabolism of arsenic in primary cultures of human and rat hepatocytes. Chem Res Toxicol 12:560–565

    Article  PubMed  CAS  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  PubMed  CAS  Google Scholar 

  • Waters SB, Devesa V, Del Razo LM, Styblo M, Thomas DJ (2004a) Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferase. Chem Res Toxicol 17:404–409

    Article  PubMed  CAS  Google Scholar 

  • Waters SB, Devesa V, Fricke MW, Creed JT, Styblo M, Thomas DJ (2004b) Glutathione modulates recombinant rat arsenic (+3 oxidation state) methyltransferase-catalyzed formation of trimethylarsine oxide and trimethylarsine. Chem Res Toxicol 17:1621–1629

    Article  PubMed  CAS  Google Scholar 

  • Wildfang E, Radabaugh TR, Vasken Aposhian H (2001) Enzymatic methylation of arsenic compounds. IX. Liver arsenite methyltransferase and arsenate reductase activities in primates. Toxicology 168:213–221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Masako Hirano and Ms. Reiko Kumata (NIES) for ICP–MS measurements. This work was partially supported by Grant-in-Aid from Ministry of Education, Culture, Sports, Science, and Technology (23390167-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seishiro Hirano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2011_710_MOESM1_ESM.ppt

Effects of BSO treatment on cellular glutathione depletion in T-REx-CHO cells. After a 6 h treatment with 0.5 mM BSO, the cells were then placed in control medium and further incubated for 24 h. Concentrations of total cellular glutathione were then measured. Data represent means ± S.E.M. of three determinations. Statistical significance was assessed with Student’s t-test. *, significantly different from control value (P < 0.05). (PPT 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Ohta, Y., Mizumura, A. et al. Analysis of arsenic metabolites in HepG2 and AS3MT-transfected cells. Arch Toxicol 85, 577–588 (2011). https://doi.org/10.1007/s00204-011-0710-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0710-5

Keywords

Navigation