Skip to main content

Advertisement

Log in

Toxicity of nanocrystal quantum dots: the relevance of surface modifications

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

An Erratum to this article was published on 17 April 2011

Abstract

With the development of nanotechnology, nanometer-sized products smaller than several 100 nm have been applied for all areas of science and technology. The nanometer-sized products, including carbon nanotubes, fullerene derivatives, and nanocrystals made of various materials, are widely employed as novel tools in various fields, not only in material engineering, electronics, plastics, automobile, aviation, and aerospace industries, but also even in cellular biology, molecular biology, and basic and clinical medical fields. In particular, nanocrystal quantum dots (QDs) have been widely used in biological and medical studies because of their far brighter photoemission and photostability. The physical and chemical properties of QDs have been circumstantially investigated, but little is known about the potential harmful effects of QDs on human health. In addition to the physical and chemical properties of the QDs, their toxicity and biological behavior are generally regulated by three other conditions: (1) the QD core material itself, (2) the surface modifications of the QD, and (3) the external environmental condition of the QDs. We herein report on the in vitro and in vivo toxicity and biological behavior of nanocrystals such as QDs. Accumulating evidence suggests that the QD-capping material, rather than the core metalloid complex, is responsible for the majority of their toxicity and biological activity. For example, molecules covered with a toxic agent showed cytotoxicity, whereas QDs conjugated with biomolecules retained the biological effects of the conjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO(2), SiO(2), and ZnO water suspensions. Water Res 40(19):3527–3532

    Article  PubMed  CAS  Google Scholar 

  • Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99(20):12617–12621

    Article  PubMed  CAS  Google Scholar 

  • Alsharif NH, Berger CE, Varanasi SS, Chao Y, Horrocks BR, Datta HK (2009) Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis. Small 5(2):221–228

    Article  PubMed  CAS  Google Scholar 

  • Anas A, Okuda T, Kawashima N et al (2009) Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells. ACS Nano 3(8):2419–2429

    Article  PubMed  CAS  Google Scholar 

  • Ballou B (2005) Quantum dot surfaces for use in vivo and in vitro. Curr Top Dev Biol 70:103–120

    Article  PubMed  CAS  Google Scholar 

  • Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • Bhakta G, Mitra S, Maitra A (2005) DNA encapsulated magnesium and manganous phosphate nanoparticles: potential non-viral vectors for gene delivery. Biomaterials 26(14):2157–2163

    Article  PubMed  CAS  Google Scholar 

  • Bharali DJ, Klejbor I, Stachowiak EK et al (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 102(32):11539–11544

    Article  PubMed  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    Article  PubMed  CAS  Google Scholar 

  • Biju V, Muraleedharan D, Nakayama K et al (2007) Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells. Langmuir 23(20):10254–10261

    Article  PubMed  CAS  Google Scholar 

  • Borm PJ, Robbins D, Haubold S et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    Article  PubMed  CAS  Google Scholar 

  • Bottero JY, Rose J, Wiesner MR (2006) Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr Environ Assess Manag 2(4):391–395

    Article  PubMed  CAS  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419

    Article  PubMed  CAS  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Huang S, Shulin E (2004) ZnS/CdS/ZnS quantum dot quantum well produced in inverted micelles. J Colloid Interface Sci 273(2):478–482

    Article  PubMed  CAS  Google Scholar 

  • Champion CI, Kickhoefer VA, Liu G et al (2009) A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One 4(4):e5409

    Article  PubMed  CAS  Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  PubMed  CAS  Google Scholar 

  • Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46

    Article  PubMed  CAS  Google Scholar 

  • Cordero SR, Carson PJ, Estabrook RA, Strouse GF, Buratto SK (2000) Photo-activated luminescence of CdSe quantum dot monolayers. J Phys Chem B 104(15):12137–12142

    Article  CAS  Google Scholar 

  • Dabbousi BO, Rodriguez-Viejo J, Mikulec FV et al (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem 101:9463–9475

    Article  CAS  Google Scholar 

  • Demento SL, Eisenbarth SC, Foellmer HG et al (2009) Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27(23):3013–3021

    Article  PubMed  CAS  Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    Article  PubMed  CAS  Google Scholar 

  • Eiha N, Maenosono S, Hanaki K, Yamamoto K, Yamaguchi Y (2003) Collective fluorescence oscillation in a water dispersion of colloidal quantum dots. Jpn J Appl Phys 42:310–313

    Article  CAS  Google Scholar 

  • Fischer HC, Liu L, Pang KS, Chan WCW (2006) Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 16(10):1299–1305

    Article  CAS  Google Scholar 

  • Fortner JD, Lyon DY, Sayes CM et al (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39(11):4307–4316

    Article  PubMed  CAS  Google Scholar 

  • Fujioka K, Hiruoka M, Sato K et al (2008) Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19(41):415102

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Nie S (2005) Quantum dot-encoded beads. Methods Mol Biol 303:61–71

    PubMed  CAS  Google Scholar 

  • Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Lond) 56(5):307–311

    Article  CAS  Google Scholar 

  • Geys J, Nemmar A, Verbeken E et al (2008) Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect 116(12):1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Guzman KA, Taylor MR, Banfield JF (2006) Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000–2004. Environ Sci Technol 40(5):1401–1407

    Article  PubMed  CAS  Google Scholar 

  • Hanaki K, Momo A, Oku T et al (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302(3):496–501

    Article  PubMed  CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  PubMed  Google Scholar 

  • Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC (2009) In vivo quantum-dot toxicity assessment. Small 6(1):138–144

    Article  CAS  Google Scholar 

  • Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  CAS  Google Scholar 

  • Hohng S, Ha T (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J Am Chem Soc 126(5):1324–1325

    Article  PubMed  CAS  Google Scholar 

  • Hoshino A, Fujioka K, Oku T et al (2004a) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169

    Article  CAS  Google Scholar 

  • Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004b) Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun 314(1):46–53

    Article  PubMed  CAS  Google Scholar 

  • Hoshino A, Fujioka K, Oku T et al (2004c) Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48(12):985–994

    PubMed  CAS  Google Scholar 

  • Hoshino A, Manabe N, Fujioka K, Suzuki K, Yasuhara M, Yamamoto K (2007a) Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: surface modification regulates biological function, including cytotoxicity. J Artif Organs 10(3):149–157

    Article  PubMed  CAS  Google Scholar 

  • Hoshino A, Nagao T, Ito-Ihara T et al (2007b) Trafficking of QD-conjugated MPO-ANCA in murine systemic vasculitis and glomerulonephritis model mice. Microbiol Immunol 51(5):551–566

    PubMed  CAS  Google Scholar 

  • Hoshino A, Kawamura YI, Yasuhara M et al (2007c) Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J Immunol 178(8):5296–5304

    PubMed  CAS  Google Scholar 

  • Hoshino A, Manabe N, Fujioka K et al (2008) GFP expression by intracellular gene delivery of GFP-coding fragments using nanocrystal quantum dots. Nanotechnology 19(49):495102

    Article  PubMed  CAS  Google Scholar 

  • Hoshino A, Hanada S, Manabe N, Nakayama T, Yamamoto K (2009) Immune response induced by fluorescent nanocrystal quantum dots in vitro and in vivo. IEEE Trans Nanobiosci 8(1):51–57

    Article  Google Scholar 

  • Hsieh MS, Shiao NH, Chan WH (2009) Cytotoxic effects of CdSe quantum dots on maturation of mouse oocytes, fertilization, and fetal development. Int J Mol Sci 10(5):2122–2135

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen NR, Moller P, Jensen KA et al (2009) Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51

    Article  PubMed  CAS  Google Scholar 

  • Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z (2007) Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett 7(10):2976–2980

    Article  PubMed  CAS  Google Scholar 

  • Kako S, Santori C, Hoshino K, Gotzinger S, Yamamoto Y, Arakawa Y (2006) A gallium nitride single-photon source operating at 200 K. Nat Mater 5(11):887–892

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Fisher B, Eisler HJ, Bawendi M (2003) Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J Am Chem Soc 125(38):11466–11467

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Yoon TJ, Yu KN et al (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89(1):338–347

    Article  PubMed  CAS  Google Scholar 

  • Kimura J, Uematsu T, Maenosono S, Yamaguchi Y (2004) Photoinduced fluorescence enhancement in CdSe/ZnS quantum dot submonolayers sandwiched between insulating layers: influence of dot proximity. J Phys Chem B 108:13258–13264

    Article  CAS  Google Scholar 

  • Kubo R (1957) Statistical-mechanical theory of irreversible processes. J Phys Soc Jpn 12:570–586

    Article  Google Scholar 

  • Kubo R (1962a) Generalized cumulant expansion method. J Phys Soc Jpn 17:1100–1120

    Article  Google Scholar 

  • Kubo R (1962b) Stochastic Liouville equations. J Math Phys 4:174–183

    Article  Google Scholar 

  • Laffan R, Goldberg M, High J, Schaeffer T, Waugh M, Rubin B (1978) Antihypertensive activity in rats for SQ 14225, an orally active inhibitor of angiotensin I-converting enzyme. J Parmacol Exp Ther 204:281–288

    CAS  Google Scholar 

  • Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6(6):651–663

    Article  PubMed  CAS  Google Scholar 

  • Lawson CC, Grajewski B, Daston GP et al (2006) Workgroup report: implementing a national occupational reproductive research agenda–decade one and beyond. Environ Health Perspect 114(3):435–441

    Article  PubMed  Google Scholar 

  • Lin H, Datar RH (2006) Medical applications of nanotechnology. Natl Med J India 19(1):27–32

    PubMed  Google Scholar 

  • Lovric J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D (2005a) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83(5):377–385

    Article  PubMed  Google Scholar 

  • Lovric J, Cho SJ, Winnik FM, Maysinger D (2005b) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12(11):1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Maenosono S, Dushkin C, Saita S, Yamaguchi Y (2000) Optical memory media based on excitation-time dependent luminescence from a thin film of semiconductor nanocrystals. Jpn J Appl Phys 39(7):4006–4012

    Article  CAS  Google Scholar 

  • Magrez A, Kasas S, Salicio V et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125

    Article  PubMed  CAS  Google Scholar 

  • Mahendra S, Zhu H, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42(24):9424–9430

    Article  PubMed  CAS  Google Scholar 

  • Manabe N, Hoshino A, Liang YQ, Goto T, Kato N, Yamamoto K (2006) Quantum dot as a drug tracer in vivo. IEEE Trans Nanobiosci 5(4):263–267

    Article  Google Scholar 

  • Mancini MC, Kairdolf BA, Smith AM, Nie S (2008) Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. J Am Chem Soc 130(33):10836–10837

    Article  PubMed  CAS  Google Scholar 

  • Mansson A, Sundberg M, Balaz M et al (2004) In vitro sliding of actin filaments labelled with single quantum dots. Biochem Biophys Res Commun 314(2):529–534

    Article  PubMed  CAS  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  PubMed  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976

    Article  PubMed  CAS  Google Scholar 

  • Mortensen LJ, Oberdorster G, Pentland AP, Delouise LA (2008) In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett 8(9):2779–2787

    Article  PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  PubMed  CAS  Google Scholar 

  • Neuhauser RG, Shimizu KT, Woo WK, Empedocles SA, Bawendy MG (2000) Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. Phys Rev Lett 85:3301–3304

    Article  PubMed  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119(30):7019–7029

    Article  CAS  Google Scholar 

  • Pison U, Welte T, Giersig M, Groneberg DA (2006) Nanomedicine for respiratory diseases. Eur J Pharmacol 533(1–3):341–350

    Article  PubMed  CAS  Google Scholar 

  • Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:226–233

    Google Scholar 

  • Robichaud C, Tanzil D, Weilenmann U, Wiesner M (2005) Relative risk analysis of several manufactured nanomaterials: an insurance industry context. Environ Sci Technol 39(22):8985–8994

    Article  PubMed  CAS  Google Scholar 

  • Rubin B, Laffan R, Kotler D, O’Keefe E, Demaio D, Goldberg M (1978) SQ 14225 (D-3 mercapto-2-methylpropanoyl-l-proline), a novel orally active inhibitor of angiotensin I-converting enzyme. Parmacol Exp Ther 204:271–280

    CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153

    Article  PubMed  CAS  Google Scholar 

  • Santra S, Yang H, Holloway PH, Stanley JT, Mericle RA (2005) Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Am Chem Soc 127(6):1656–1657

    Article  PubMed  CAS  Google Scholar 

  • Sapra S, Prakash A, Ghangrekar A, Periasamy N, Sarma DD (2005) Emission properties of manganese-doped ZnS nanocrystals. J Phys Chem B 109(5):1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595

    Article  PubMed  CAS  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA et al (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Wolpert C, Guilloteau H, Balan L, Lambert J, Merlin C (2009) The exposure of bacteria to CdTe-core quantum dots: the importance of surface chemistry on cytotoxicity. Nanotechnology 20(22):225101

    Article  PubMed  CAS  Google Scholar 

  • Service RF (2005) Nanotechnology. Calls rise for more research on toxicology of nanomaterials. Science 310(5754):1609

    Article  PubMed  CAS  Google Scholar 

  • Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48(9):669–675

    PubMed  CAS  Google Scholar 

  • Shiohara A, Hanada S, Prabakar S et al (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132(1):248–253

    Article  PubMed  CAS  Google Scholar 

  • Springholz G, Holy VV, Pinczolits M, Bauer G (1998) Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant. Science 282(5389):734–737

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan C, Lee J, Papadimitrakopoulos F, Silbart LK, Zhao M, Burgess DJ (2006) Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots. Mol Ther 14(2):192–201

    Article  PubMed  CAS  Google Scholar 

  • Stern ST, Zolnik BS, McLeland CB, Clogston J, Zheng J, McNeil SE (2008) Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicol Sci 106(1):140–152

    Article  PubMed  CAS  Google Scholar 

  • Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310(5745):86–89

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Marcus RA (2005) Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. J Chem Phys 123:054704

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol Vitro 20(7):1202–1212

    Article  CAS  Google Scholar 

  • Uematsu T, Kimura J, Yamaguchi Y (2004) The reversible photoluminescence enhancement of a CdSe/ZnS nanocrystal thin film. Nanotechnology 15:822–827

    Article  CAS  Google Scholar 

  • Wiesner MR (2006) Responsible development of nanotechnologies for water and wastewater treatment. Water Sci Technol 53(3):45–51

    Article  PubMed  CAS  Google Scholar 

  • Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6(6):1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Liu H, Liu J et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Sha MY, Wong EY et al (2003) Multiplexed SNP genotyping using the Qbead system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res 31(8):e43

    Article  PubMed  Google Scholar 

  • Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290(6):C1495–C1502

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Holloway PH, Santra S (2004a) Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots. J Chem Phys 121(15):7421–7426

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Holloway PH, Cunningham G, Schanze KS (2004b) CdS:Mn nanocrystals passivated by ZnS: synthesis and luminescent properties. J Chem Phys 121(20):10233–10240

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40(6):1855–1861

    Article  PubMed  CAS  Google Scholar 

  • Yang RS, Chang LW, Wu JP et al (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115(9):1339–1343

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW (2005) Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proc Natl Acad Sci 102:14284–14289

    Article  PubMed  CAS  Google Scholar 

  • Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 110(1):138–155

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Stilwell JL, Gerion D et al (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6(4):800–808

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Ghazani AA, Song Q, Mardyani S, Chan WC, Wang C (2006) Cellular imaging and surface marker labeling of hematopoietic cells using quantum dot bioconjugates. Lab Hematol 12(2):94–98

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62(Suppl):S5–S9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was mainly supported by grants “H14-nano-004” and “H19-nano-012” from the Ministry of Health, Labor and Welfare to K.Y.; in parts by KAKENHI Grant-in-aid for young scientists B (#22790359) and by a research fellowship of the Japan Society for the Promotion of Science for Young Scientists (2007–2009) to A.H.; in parts by a grant from the Ministry of Health, Labor and welfare of Japan (H22-Chemical-Young-009) to S.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Hoshino.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00204-011-0708-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshino, A., Hanada, S. & Yamamoto, K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol 85, 707–720 (2011). https://doi.org/10.1007/s00204-011-0695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0695-0

Keywords

Navigation