Skip to main content
Log in

Cytotoxic effects of hydroxylated fullerenes on isolated rat hepatocytes via mitochondrial dysfunction

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The cytotoxic effects of hydroxylated fullerenes, also termed fullerenols or fullerols [C60(OH) n ], which are known nanomaterials and water-soluble fullerene derivatives, were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to C60(OH)24 caused not only concentration (0–0.25 mM)- and time (0–3 h)-dependent cell death accompanied by the formation of cell blebs, loss of cellular ATP, reduced glutathione (GSH), and protein thiol levels, but also the accumulation of glutathione disulfide and malondialdehyde, indicating lipid peroxidation. Of the other analogues examined, the cytotoxic effects of C60(OH)12 and fullerene C60 at a concentration of 0.125 mM were less than those of C60(OH)24. The loss of mitochondrial membrane potential and generation of oxygen radical species in hepatocytes incubated with C60(OH)24 were greater than those with C60(OH)12 and fullerene C60. In the oxygen consumption of mitochondria isolated from rat liver, the ratios of state-3/state-4 respiration were more markedly decreased by C60(OH)24 and C60(OH)12 compared with C60. In addition, C60(OH)24 and C60(OH)12 resulted in the induction of the mitochondrial permeability transition (MPT), and the effects of C60(OH)12 were less than those of C60(OH)24. Taken collectively, these results indicate that (a) mitochondria are target organelles for fullerenols, which elicit cytotoxicity through mitochondrial failure related to the induction of the MPT, mitochondrial depolarization, and inhibition of ATP synthesis in the early stage and subsequently oxidation of GSH and protein thiols, and lipid peroxidation through oxidative stress at a later stage; and (b) the toxic effects of fullerenols may depend on the number of hydroxyl groups participating in fullerene in rat hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DCHF-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DMSO:

Dimethyl sulfoxide

GSH:

Glutathione

GSSG:

Glutathione disulfide

HEPES:

N-(2-hydroxyethyl)-piperazine-N-(2-ethanesulfonic acid)

MDA:

Malondialdehyde

MPT:

Mitochondrial permeability transition

ROS:

Reactive oxygen species

ΔΨ:

Membrane potential

References

  • Albano E, Rundgren M, Hervison PJ, Nelson SD, Moldéus P (1985) Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity. Mol Pharmacol 28:306–311

    PubMed  CAS  Google Scholar 

  • Arora AS, Jones BJ, Patel TC, Bornk SF, Gores JG (1997) Ceramide induces hepatocytes cell death through disruption of mitochondrial function in the rat. Hepatology 25:958–963

    Article  PubMed  CAS  Google Scholar 

  • Bellomo G, Mirabelli F, Richelmi P, Malorni W, Iosi F, Orrenius S (1990) The cytoskeleton as a target in quinone toxicity. Free Radic Res Commun 8:391–399

    Article  PubMed  CAS  Google Scholar 

  • Bogdanović G, Kojić V, Dordević A, Canadanović-Brunet J, Vojinović-Miloradov M, Baltić VV (2004) Modulating activity of fullerols C60(OH)22 on doxorubicin-induced cytotoxicity. Toxicol In Vitro 18:629–637

    Article  PubMed  Google Scholar 

  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster W (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11. doi:10.1186/1743-8977-3-11

    Article  PubMed  Google Scholar 

  • Cain K, Skilleter DS (1987) Preparation and use of mitochondria in toxicological research. In: Snell K, Mullock B (eds) Biochemical toxicology: a practical approach. IRL Press, Oxford, pp 217–254

    Google Scholar 

  • Chen YW, Hwang KC, Yen CC, Lai YL (2004) Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Integr Comp Physiol 287:R21–R26

    Article  CAS  Google Scholar 

  • Chen C, Xing G, Wang J, Zhao F, Chai Z, Fang X (2005) Multihydroxylated [Gd@C82(OH)22] n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5:2050–2057

    Article  PubMed  CAS  Google Scholar 

  • Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3:129–135

    Article  PubMed  CAS  Google Scholar 

  • Fawthrop DJ, Boobis AR, Davies DS (1991) Mechanisms of cell death. Arch Toxicol 65:437–444

    Article  PubMed  CAS  Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119

    Article  PubMed  CAS  Google Scholar 

  • Gelderman MP, Simkova O, Clogston JD, Partri AK, Siddiqui SF, Vostal AC, Simka J (2008) Adverse effects of fullerenes on endothelial cells: fullerenol C60(OH)24 induced tissue factor and ICAM-I membrane expression and apoptosis in vitro. Int J Nanomedicine 3:59–68

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischemia, but open upon reperfusion. Biochem J 307:93–98

    PubMed  CAS  Google Scholar 

  • Hoet PHM, Brüske-Hohlfeld I, Salata O (2004) Nanoparticles-known and unknown health risks. J Nanobiotechnol 2:1–15

    Article  Google Scholar 

  • Injac R, Perse M, Obermajer N, Djordjevic-Milic V, Prijatelj M, Djordjevic A, Cerar A, Strukelj B (2008) Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas. Biomaterials 29:3451–3460

    Article  PubMed  CAS  Google Scholar 

  • Injac R, Radic N, Govedarica B, Perse M, Cerar A, Djordjevic A, Strukelj B (2009) Acute doxorubicin pulmotoxicity in rat with malignant neoplasm is effectively treated with fullerenol C60(OH)24 through inhibition of oxidative stress. Pharmacol Rep 61:335–342

    PubMed  CAS  Google Scholar 

  • Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trakovic V (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Chen WQ, Tang XW, Chiang LY, Yang CY, Schloss JV, Wu JY (2000) Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents. J Neurosci Res 62:600–607

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Lyles DN, Peifley K, Lockett S, Neun BW, Hansen M, Clogston J, Stern ST, McNeil SE (2010) Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248:249–258

    Article  PubMed  CAS  Google Scholar 

  • Jones DP (1981) Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. J Chromatogr 225:446–449

    Article  PubMed  CAS  Google Scholar 

  • Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP, Jones DP, Lemasters JJ, Farber H, Jaeschke H (1990) Mechanisms of hypoxic cell injury. Summary of the symposium presented at the 1990 annual meeting of the society of toxicology. Toxicol Appl Pharmacol 106:165–178

    Article  PubMed  CAS  Google Scholar 

  • Kettenhofen NJ, Wood MJ (2010) Formation, reactivity, and detection of protein sulfenic acids. Chem Res Toxicol 23:1633–1646

    Article  PubMed  CAS  Google Scholar 

  • Kim J-S, Jin Y, Lemasters JJ (2006) Reactive oxygen species, but not Ca2+, trigger pH and mitochondrial permeability transition-dependent killing of adult rat myocytes after ischemia/reperfusion. Am J Phyisol Heart Circ Physiol 290:H2024–H2034

    Article  CAS  Google Scholar 

  • Kon K, Kim J-S, Uchiyama A, Jaeschke H, Lemasters JJ (2010) Lysosomal iron mobilization and induction of the mitochondrial permeability transition in acetaminophen-induced toxicity to mouse hepatocytes. Toxicol Sci 117:101–108

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 66:1–15

    PubMed  CAS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckministerfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Lemasters JJ, Nieminen AL, Chacon E, Imberti R, Gores G, Reece JM, Herman B (1993) Use of fluorescent probes to monitor mitochondrial membrane potential in isolated mitochondria, cell suspensions, and cultured cells. In: Lash LH, Jones DP (eds) Mitochondrial dysfunction. Academic Press, San Diego, pp 404–415

    Google Scholar 

  • Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B (1997) The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem 174:159–165

    Article  PubMed  CAS  Google Scholar 

  • Levi N, Hantgan RR, Lively MO, Carroll DL, Prasad GL (2006) C60-fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnol 4:14

    Article  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Terry Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Percept 111:455–460

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mehta R, Chan K, Lee O, Tafazoli S, O’Brien PJ (2008) Drug-associated mitochondrial toxicity. In: Dykens JA, Will Y (eds) Drug-induced mitochondrial dysfunction. Wiley, Hoboken, pp 71–126

    Chapter  Google Scholar 

  • Moldéus P, Hogberg J, Orrenius S (1978) Isolation and use of liver cells. Method Enzymol 52:60–71

    Article  Google Scholar 

  • Möller W, Brown DM, Kreyling WG, Stone V (2005) Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium. Part Fibre Toxicol 2:7. doi:10.1186/1743-8977-2-7

    Article  PubMed  Google Scholar 

  • Mrdanović J, Solajić C, Bogdanović V, Stankov K, Bogdanović G, Djordjevic A (2009) Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat Res 680:25–30

    PubMed  Google Scholar 

  • Murugan MA, Gangadharan B, Mathur P (2002) Antioxidative effect of fullerenol on goat epididymal spermatozoa. Asian J Androl 4:149–152

    PubMed  CAS  Google Scholar 

  • Nakagawa Y, Moldéus P (1999) Role of mitochondrial membrane permeability transition in p-hydroxybenzoate ester-induced cytotoxicity in rat hepatocytes. Biochem Pharmacol 58:811–816

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Suzuki T, Kamimura H, Nagai F (2005) N-Nitrosofenfluramine induces cytotoxicity via mitochondrial dysfunction and oxidative stress in isolated rat hepatocytes. Arch Toxicol 79:312–320

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Suzuki T, Tayama S, Ishii H, Ogata A (2009) Cytotoxic effects of 3,4-methylenedioxy-N-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes. Arch Toxicol 83:69–80

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P, Bellomo G, Orrenius S (1992) Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32:449–470

    Article  PubMed  CAS  Google Scholar 

  • Niwa Y, Iwai N (2007) Nanomaterials induce oxidized low-density lipoprotein cellular uptake in macrophages and platelet aggregation. Circ J 71:437–444

    Article  PubMed  CAS  Google Scholar 

  • Petronilli V, Constantini P, Scorrano L, Colonna R, Passamonti S, Bermardi P (1994) The voltage sensor of the mitochondrial permeability transition pore is turned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidation and its reversal by reducing agents. J Biol Chem 269:16638–16642

    PubMed  CAS  Google Scholar 

  • Pourahmad J, Khan S, O’Brien PJ (2001) Lysosomal oxidative stress cytotoxicity induced by nitrofurantoin redox cycling in hepatocytes. Adv Exp Med Biol 500:261–265

    Article  PubMed  CAS  Google Scholar 

  • Qian T, Nieminen A-L, Herman B, Lemasters JJ (1997) Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol 273:C1783–C1792

    PubMed  CAS  Google Scholar 

  • Reed DJ (1990) Glutathione: toxicological implications. Annu Rev Pharmacol Toxicol 30:603–631

    Article  PubMed  CAS  Google Scholar 

  • Reed DJ, Babson JR, Beatty PW, Brodie AE, Ellis WW, Potter DW (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide and related thiols and disulfides. Anal Biochem 106:55–62

    Article  PubMed  CAS  Google Scholar 

  • Roberts JE, Wielgus AR, Boyes WK, Andley U, Chignell CF (2008) Phototoxicity and cytotoxicity of fullerols in human lens epithelial cells. Toxicol Appl Pharmacol 228:49–58

    Article  PubMed  CAS  Google Scholar 

  • Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4:10. doi:10.1186/1743-8911-4-10

    Article  PubMed  Google Scholar 

  • Saitoh Y, Xiao L, Mizuno H, Kato S, Aoshima H, Taira H, Kokubo K, Miwa N (2010) Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radic Res 44:1072–1081

    Article  PubMed  CAS  Google Scholar 

  • Sandy MS, Moldéus P, Ross D, Smith M (1986) Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Studies with a compromised isolated hepatocyte model system. Biochem Pharmacol 35:3095–3101

    Article  PubMed  CAS  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  • Shen H-M, Shi C-Y, Shen Y, Ong C-N (1996) Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic Biol Med 21:139–146

    Article  PubMed  CAS  Google Scholar 

  • Trost LC, Lemasters JJ (1996) The mitochondrial permeability transition: a new pathophysiological mechanism for Rey’s syndrome and toxic lover injury. J Pharmacol Exp Ther 278:1000–1005

    PubMed  CAS  Google Scholar 

  • Tsai MC, Chen YH, Chiang LY (1997) Polyhydroxylated C60, fullerenol, a novel free-radical trapper, prevented hydrogen peroxide- and cumene hydroperoxide-elicted changes in rat hippocampus in vitro. J Pharma Pharmacol 49:438–445

    Article  CAS  Google Scholar 

  • Uchiyama A, Kim JS, Kon K, Jaeschke H, Ikejima K, Watanabe S, Lemasters JJ (2008) Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 48:1644–1654

    Article  PubMed  CAS  Google Scholar 

  • Ueng T-H, Kang JJ, Wang HW, Cheng YW, Chiang LY (1997) Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicol Lett 93:29–37

    Article  PubMed  CAS  Google Scholar 

  • Vileno B, Marcoux PR, Lekka M, Sienkiewicz A, Fehér T, Forró L (2006) Spectroscopic and photophysical properties of a highly derivatized C60 fullerol. Adv Funct Mater 16:120–128

    Article  CAS  Google Scholar 

  • Wallace KB, Eells JT, Madeira VM, Cortopassi G, Jones DP (1997) Mitochondria-mediated cell injury. Symposium overview. Fundam Appl Toxicol 38:23–37

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  PubMed  CAS  Google Scholar 

  • Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290:C1495–C1502

    Article  PubMed  CAS  Google Scholar 

  • Zhang JG, Tirmenstein MA, Nicholls-Grzemski FA, Fariss NW (2001) Mitochondrial electron transport inhibitors cause lipid peroxidation-dependent and -independent cell death: protective role of antioxidants. Arch Biochem Biophys 393:87–96

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, He YY, Chignell CF, Yin JJ, Andley U, Roberts JE (2009) Difference in phototoxicity of cyclodextrin complexed fullerene [(γ-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Chem Res Toxicol 22:660–667

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, Y., Suzuki, T., Ishii, H. et al. Cytotoxic effects of hydroxylated fullerenes on isolated rat hepatocytes via mitochondrial dysfunction. Arch Toxicol 85, 1429–1440 (2011). https://doi.org/10.1007/s00204-011-0688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0688-z

Keywords

Navigation