Skip to main content
Log in

Depletion of CD4+CD25+Foxp3+ regulatory T cells with anti-CD25 antibody may exacerbate the 1,3-β-glucan-induced lung inflammatory response in mice

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

1,3-β-Glucan was a major cell wall component of fungus. The existing studies showed that 1,3-β-glucan exposure could induce lung inflammation that involved both Th1 and Th2 cytokines. Regulatory T cells (Treg cells) played a critical role in regulating immune homeostasis by adjusting the Th1/Th2 balance. The role of Treg cells and regulatory mechanism in 1,3-β-glucan-induced lung inflammation is still unclear. In our study, mice were exposed to 1,3-β-glucan by intratracheal instillation. To investigate the role of Treg cells in response to 1,3-β-glucan, we generated Treg-depleted mice by intraperitoneal administration of anti-CD25 mAb. The Treg-depleted mice showed more inflammatory cells and severer pathological inflammatory change in lung tissue. Depletion of Treg cells led to increased Th1 cytokines and decreased Th2 cytokines. Treg-depleted mice showed a decreased expression of anti-inflammation cytokine and lower-level expression of CTLA-4. In all, our study indicated that Treg cells participated in regulating the 1,3-β-glucan-induced lung inflammation. Depletion of Treg cells aggravated the 1,3-β-glucan-induced lung inflammation, regulated the Th1/Th2 balance by enhancing Th1 response. Treg cells exerted their modulation function depending on both direct and indirect mechanism during the 1,3-β-glucan-induced lung inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson KV (2000) Toll signaling pathways in the innate immune response. Curr Opin Immunol 12(1):13–19

    Article  PubMed  CAS  Google Scholar 

  • Arbibe L, Mira JP, Teusch N et al (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 1(6):533–540

    Article  PubMed  CAS  Google Scholar 

  • Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420(6915):502–507

    Article  PubMed  CAS  Google Scholar 

  • Bellinghausen I, Klostermann B, Knop J, Saloga J (2003) Human CD4+CD25+ T cells derived from the majority of atopic donors are able to suppress TH1 and TH2 cytokine production. J Allergy Clin Immunol 111(4):862–868

    Article  PubMed  CAS  Google Scholar 

  • Bonlokke JH, Stridh G, Sigsgaard T et al (2006) Upper-airway inflammation in relation to dust spiked with aldehydes or glucan. Scand J Work Environ Health 32(5):374–382

    PubMed  Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413(6851):36–37

    Google Scholar 

  • Brown GD, Taylor PR, Reid DM et al (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196(3):407–412

    Article  PubMed  CAS  Google Scholar 

  • Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197(9):1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Li Q, Wang Y et al (2004) CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest 113(2):310–317

    PubMed  CAS  Google Scholar 

  • Dales R, Miller D, White J, Dulberg C, Lazarovits AI (1998) Influence of residential fungal contamination on peripheral blood lymphocyte populations in children. Arch Environ Health 53(3):190–195

    Article  PubMed  CAS  Google Scholar 

  • Doganci A, Eigenbrod T, Krug N et al (2005) The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J Clin Invest 115(2):313–325

    PubMed  CAS  Google Scholar 

  • Douwes J (2005) (1→3)-Beta-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air 15(3):160–169

    Article  PubMed  CAS  Google Scholar 

  • Edinger M, Hoffmann P, Ermann J et al (2003) CD4+ CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9(9):1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Fogelmark B, Sjostrand M, Rylander R (1994) Pulmonary inflammation induced by repeated inhalations of beta(1, 3)-D-glucan and endotoxin. Int J Exp Pathol 75(2):85–90

    PubMed  CAS  Google Scholar 

  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3):329–341

    Article  PubMed  CAS  Google Scholar 

  • Goodridge HS, Wolf AJ, Underhill DM (2009) Beta-glucan recognition by the innate immune system. Immunol Rev 230(1):38–50

    Article  PubMed  CAS  Google Scholar 

  • Grindebacke H, Wing K, Andersson AC, Suri-Payer E, Rak S, Rudin A (2004) Defective suppression of Th2 cytokines by CD4CD25 regulatory T cells in birch allergics during birch pollen season. Clin Exp Allergy 34(9):1364–1372

    Article  PubMed  CAS  Google Scholar 

  • Gutcher I, Becher B (2007) APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 117(5):1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Haeryfar SM, DiPaolo RJ, Tscharke DC, Bennink JR, Yewdell JW (2005) Regulatory T cells suppress CD8+ T cell responses induced by direct priming and cross-priming and moderate immunodominance disparities. J Immunol 174(6):3344–3351

    PubMed  CAS  Google Scholar 

  • Hawrylowicz CM, O’Garra A (2005) Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 5(4):271–283

    Article  PubMed  CAS  Google Scholar 

  • Jaffar Z, Sivakuru T, Roberts K (2004) CD4+CD25+ T cells regulate airway eosinophilic inflammation by modulating the Th2 cell phenotype. J Immunol 172(6):3842–3849

    PubMed  CAS  Google Scholar 

  • Kankkunen P, Teirila L, Rintahaka J, Alenius H, Wolff H, Matikainen S (2010) (1, 3)-beta-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. J Immunol 184(11):6335–6342

    Article  PubMed  CAS  Google Scholar 

  • Kearley J, Barker JE, Robinson DS, Lloyd CM (2005) Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med 02(11):1539–1547

    Article  Google Scholar 

  • Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54(8):721–728

    Article  PubMed  CAS  Google Scholar 

  • Lewkowich IP, Herman NS, Schleifer KW et al (2005) CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J Exp Med 202(11):1549–1561

    Article  PubMed  CAS  Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  PubMed  CAS  Google Scholar 

  • Ling EM, Smith T, Nguyen XD et al (2004) Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 363(9409):608–615

    Article  PubMed  CAS  Google Scholar 

  • McGee HS, Agrawal DK (2009) Naturally occurring and inducible T-regulatory cells modulating immune response in allergic asthma. Am J Respir Crit Care Med 180(3):211–225

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Ancillol A, Dominguez-Noche C, Gil-Adrados AC, Cosmes PM (2004) Hypersensitivity pneumonitis due to occupational inhalation of fungi-contaminated corn dust. J Investig Allergol Clin Immunol 14(2):165–167

    PubMed  CAS  Google Scholar 

  • O’Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C (2008) Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev 223:114–131

    Article  PubMed  Google Scholar 

  • Rice PJ, Kelley JL, Kogan G et al (2002) Human monocyte scavenger receptors are pattern recognition receptors for (1→3)-beta-D-glucans. J Leukoc Biol 72(1):140–146

    PubMed  CAS  Google Scholar 

  • Ronald LA, Davies HW, Bartlett KH et al (2003) Beta(1→3)-glucan exposure levels among workers in four British Columbia sawmills. Ann Agric Environ Med 10(1):21–29

    PubMed  CAS  Google Scholar 

  • Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50

    Article  PubMed  CAS  Google Scholar 

  • Rylander R (1997a) Airborne (1→3)-beta-D-glucan and airway disease in a day-care center before and after renovation. Arch Environ Health 52(4):281–285

    Article  PubMed  CAS  Google Scholar 

  • Rylander R (1997b) Investigations of the relationship between disease and airborne (1→3)-beta-D-glucan in buildings. Mediators Inflamm 6(4):275–277

    Article  PubMed  CAS  Google Scholar 

  • Rylander R (1999) Indoor air-related effects and airborne (1→3)-beta-D-glucan. Environ Health Perspect 107(Suppl 3):501–503

    Article  PubMed  Google Scholar 

  • Rylander R (2002) Endotoxin in the environment–exposure and effects. J Endotoxin Res 8(4):241–252

    PubMed  CAS  Google Scholar 

  • Rylander R (2010) Organic dust induced pulmonary disease - the role of mould derived beta-glucan. Ann Agric Environ Med 17(1):9–13

    PubMed  CAS  Google Scholar 

  • Rylander R, Holt PG (1998) (1→3)-beta-D-glucan and endotoxin modulate immune response to inhaled allergen. Mediators Inflamm 7(2):105–110

    Article  PubMed  CAS  Google Scholar 

  • Rylander R, Thorn J, Attefors R (1999) Airways inflammation among workers in a paper industry. Eur Respir J 13(5):1151–1157

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Torii M, Ma N et al (2008) Differential regulatory function of resting and preactivated allergen-specific CD4+CD25+ regulatory T cells in Th2-type airway inflammation. J Immunol 181(10):6889–6897

    PubMed  CAS  Google Scholar 

  • Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  • Suto A, Nakajima H, Kagami SI, Suzuki K, Saito Y, Iwamoto I (2001) Role of CD4(+) CD25(+) regulatory T cells in T helper 2 cell-mediated allergic inflammation in the airways. Am J Respir Crit Care Med 164(4):680–687

    PubMed  CAS  Google Scholar 

  • Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT (2003) CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 198(6):889–901

    Article  PubMed  CAS  Google Scholar 

  • Taylor PR, Brown GD, Reid DM et al (2002) The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169(7):3876–3882

    PubMed  CAS  Google Scholar 

  • Thorn J, Beijer L, Rylander R (1998) Airways inflammation and glucan exposure among household waste collectors. Am J Ind Med 33(5):463–470

    Article  PubMed  CAS  Google Scholar 

  • Tsoni SV, Brown GD (2008) beta-Glucans and dectin-1. Ann NY Acad Sci 1143:45–60

    Article  PubMed  CAS  Google Scholar 

  • Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532

    Article  PubMed  CAS  Google Scholar 

  • Wan YY, Flavell RA (2005) Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 102(14):5126–5131

    Article  PubMed  CAS  Google Scholar 

  • Williams DL, Ha T, Li C et al (2003) Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrbial sepsis correlates with mortality. Crit Care Med 31(6):1808–1818

    Article  PubMed  Google Scholar 

  • Young S-H, Castranova V (2005) Toxicology of Β-1, 3-glucans, glucans as a marker for fungal exposure. CRC Press, Boca Raton, pp 35–52

    Book  Google Scholar 

  • Young SH, Robinson VA, Barger M, Porter DW, Frazer DG, Castranova V (2001) Acute inflammation and recovery in rats after intratracheal instillation of a 1→3-beta-glucan (zymosan A). J Toxicol Environ Health A 64(4):311–325

    Article  PubMed  CAS  Google Scholar 

  • Young SH, Roberts JR, Antonini JM (2006) Pulmonary exposure to 1→3-beta-glucan alters adaptive immune responses in rats. Inhal Toxicol 18(11):865–874

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate Professor Yongjun Jiang and Associate Professor Zining Zhang, key laboratory of AIDS Immunology of Ministry of Health, China Medical University, for their excellent help with the immunological knowledge and great technical support. And we thank Professor Yuhua Chen and Associate Professor Weidong Zhao, Department of Developmental Biology, China Medical University, for their professional guidance with the molecular biology experiments. This work was supported by a grant from the National Natural Science Foundation of China (No. 30771791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Weng, D., Chen, Y. et al. Depletion of CD4+CD25+Foxp3+ regulatory T cells with anti-CD25 antibody may exacerbate the 1,3-β-glucan-induced lung inflammatory response in mice. Arch Toxicol 85, 1383–1394 (2011). https://doi.org/10.1007/s00204-011-0673-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0673-6

Keywords

Navigation