Skip to main content

Advertisement

Log in

The difference of glutathione antioxidant system in newly weaned and young mice liver and its involvement in isoline-induced hepatotoxicity

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cellular glutathione antioxidant system plays important roles in counteracting hepatotoxins-induced oxidative stress injury. The present study was designed to observe the differences of this system in newly weaned and young mice liver and its involvement in the susceptibility to isoline-induced liver injury. Our results showed that liver reduced glutathione (GSH) amounts were higher in newly weaned mice than young mice. Glutamate-cysteine ligase (GCL) activity was higher in newly weaned mice due to the higher expression of catalytic subunit of GCL (GCLC) protein and mRNA. However, the activities of glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) were higher in young mice liver, which might be due to the higher expression of GR, GPx-1, and GST-Pi proteins. Next, the results of AST analysis and histopathological evaluation showed that newly weaned mice demonstrated more severe liver injury induced by isoline. Furthermore, liver GSH amounts and the activities of GR, GPx, and GST were all lower in newly weaned mice than young mice after treated with isoline. Depletion of cellular GSH by d,l-buthionine-(S, R)-sulfoximine (BSO) aggravated isoline-induced cytotoxicity, while N-acetyl-l cysteine (NAC) ameliorated such cytotoxicity. Furthermore, the inhibitors of GR, GPx, and GST all aggravated isoline-induced cytotoxicity. In conclusion, our results demonstrated the differences of glutathione antioxidant system between newly weaned and young mice liver. Meanwhile, our results also revealed age-dependent liver injury induced by isoline for the first time, which might be due to the different responses of glutathione antioxidant system to isoline between newly weaned and young mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

GCL:

Glutamate-cysteine ligase

GR:

Glutathione reductase

GPx:

Glutathione peroxidase

GST:

Glutathione-S-transferase

NAC:

N-acetyl-l cysteine

ROS:

Reactive oxygen species

DILI:

Drug-induced liver injury

LPS:

Lipopolysaccharide

PAs:

Pyrrolizidine alkaloids

DTNB:

5, 5′-Dithio-bis (2-nitrobenzoic acid)

BCNU:

1,3-Bis(2-chloroethyl)-1-nitrourea

BSO:

d,l-buthionine-(S, R)-sulfoximine

MA:

Mercaptosuccinic acid

EA:

Ethacrynic acid

CDNB:

1-Chloro-2, 4-dinitrophenol

RT-PCR:

Reverse transcription-polymerase chain reaction

MTT:

3-(4, 5-Dimethyl-thiazol-2-yl) 2, 5-diphenyltetra-zolium bromide

AST:

Aspartate aminotransferase

References

  • Allameh A, Vansoun E, Zarghi A (1997) Role of glutathione conjugation in protection of weanling rat liver against acetaminophen-induced hepatotoxicity. Mech Ageing Dev 95:71–79

    Article  PubMed  CAS  Google Scholar 

  • Al-Rawi M (2007) Inhibitory effect of melatonin on histological changes induced in rat liver by thioacetamide intoxication. J Biol Sci 7:10–18

    Article  CAS  Google Scholar 

  • Bammler T, Smith C, Wolf C (1994) Isolation and characterization of two mouse Pi-class glutathione S-transferase genes. Biochem J 298:385–390

    PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  PubMed  CAS  Google Scholar 

  • Chaudiere J, Wilhelmsen EC, Tappel AL (1984) Mechanism of selenium-glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans. J Biol Chem 259:1043–1050

    PubMed  CAS  Google Scholar 

  • Cho H, Jedlicka A, Reddy S, Kensler T, Yamamoto M, Zhang L, Kleeberger S (2002) Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol 26:175–182

    PubMed  CAS  Google Scholar 

  • Deleve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52:287–305

    Article  PubMed  CAS  Google Scholar 

  • Durham S, Brouwer A, Barelds R, Horan M, Knook D (1990) Comparative endotoxin-induced hepatic injury in young and aged rats. J Pathol 162:341–349

    Article  PubMed  CAS  Google Scholar 

  • El Mouatassim S, Guerin P, Menezo Y (1999) Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod 5:720–725

    Article  PubMed  CAS  Google Scholar 

  • Fu P, Xia Q, Lin G, Chou M (2004) Pyrrolizidine alkaloids-genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 36:1–55

    Article  PubMed  CAS  Google Scholar 

  • Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Nataf R, Geier MR (2009) Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci 280:101–108

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    PubMed  CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Nielsen S, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210

    Article  PubMed  CAS  Google Scholar 

  • Hansson J, Berhane K, Castro VM, Jungnelius U, Mannervik B, Ringborg U (1991) Sensitization of human melanoma cells to the cytotoxic effect of melphalan by the glutathione transferase inhibitor ethacrynic acid. Cancer Res 51:94–98

    PubMed  CAS  Google Scholar 

  • Hatano E, Bradham C, Stark A, Iimuro Y, Lemasters J, Brenner D (2000) The mitochondrial permeability transition augments Fas-induced apoptosis in mouse hepatocytes. J Biol Chem 275:11814–11823

    Article  PubMed  CAS  Google Scholar 

  • Husain K, Somani S (1997) Interaction of exercise and ethanol on hepatic and plasma antioxidant system in rat. Pathophysiology 4:69–74

    Article  CAS  Google Scholar 

  • Ji L, Liu T, Chen Y, Wang Z (2009) Protective mechanisms of N-acetyl-cysteine against pyrrolizidine alkaloid clivorine-induced hepatotoxicity. J Cell Biochem 108:424–432

    Article  PubMed  CAS  Google Scholar 

  • Jopperi-Davis KS, Park MS, Rogers LK, Backes CH, Lim IK Jr, Smith CV (2004) Compartmental inhibition of hepatic glutathione reductase activities by 1, 3-bis(2-chloroethyl)-N-nitrosourea (BCNU) in Sprague-Dawley and Fischer-344 rats. Toxicol Lett 147:219–228

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Chung HC, Cho JY (1996) Molecular mechanism for alkyl sulfide-modulated carbon tetrachloride-induced hepatotoxicity: the role of cytochrome P450 2E1, P450 2B and glutathione S-transferase expression. J Pharmacol Exp Ther 277:1058–1066

    PubMed  CAS  Google Scholar 

  • Kim J, Li S, GrandPre T, Qiu D, Strittmatter S (2003) Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 38:187–199

    Article  PubMed  CAS  Google Scholar 

  • Lei XG, Cheng WH (2005) New roles for an old selenoenzyme: evidence from glutathione peroxidase-1 null and overexpressing mice. J Nutr 135:2295–2298

    PubMed  CAS  Google Scholar 

  • Leung L, Kwong M, Hou S, Lee C, Chan J (2003) Deficiency of the Nrf 1 and Nrf 2 transcription factors results in early embryonic lethality and severe oxidative Stress. J Biol Chem 278:48021–48029

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Choi J (2000) Age-associated decline in gamma-glutamylcysteine synthetase gene expression in rats. Free Radic Biol Med 28:566–574

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Chen Y, Wang Z, Ji L, Wang Z (2010) Pyrrolizidine alkaloid isoline-induced oxidative injury in various mouse tissues. Exp Toxicol Pathol 62:251–257

    Article  PubMed  CAS  Google Scholar 

  • Lucena M, Andrade R, Kaplowitz N, Garcia-Cortes M, Fernandez M, Romero-Gomez M, Bruguera M, Hallal H, Robles-Diaz M, Rodriguez-Gonzalez J (2009) Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex. Hepatology 49:2001–2009

    Article  PubMed  Google Scholar 

  • Mannervik B, Awasthi Y, Board P, Hayes J, Di Ilio C, Ketterer B, Listowsky I, Morgenstern R, Muramatsu M, Pearson W (1992) Nomenclature for human glutathione transferases. Biochem J 282:305–306

    PubMed  CAS  Google Scholar 

  • McConnachie LA, Mohar I, Hudson FN, Ware CB, Ladiges WC, Fernandez C, Chatterton-Kirchmeier S, White CC, Pierce RH, Kavanagh TJ (2007) Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol Sci 99:628–636

    Article  PubMed  CAS  Google Scholar 

  • Morishita K, Mizukawa Y, Kasahara T, Okuyama M, Takashima K, Toritsuka N, Miyagishima T, Nagao T, Urushidani T (2006) Gene expression profile in liver of differing ages of rats after single oral administration of acetaminophen. J Toxicol Sci 31:491–507

    Article  PubMed  CAS  Google Scholar 

  • Penninckx M (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol 26:737–742

    Article  PubMed  CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    PubMed  CAS  Google Scholar 

  • Rikans L, DeCicco L, Hornbrook K, Yamano T (1999) Effect of age and carbon tetrachloride on cytokine concentrations in rat liver. Mech Ageing Dev 108:173–182

    Article  PubMed  CAS  Google Scholar 

  • Rotruck J, Pope A, Ganther H, Swanson A, Hafeman D, Hoekstra W (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  • Sanz N, Diez-Fernandez C, Alvarez A, Cascales M (1997) Age-dependent modifications in rat hepatocyte antioxidant defense systems. J Hepatol 27:525–534

    Article  PubMed  CAS  Google Scholar 

  • Sanz N, Diez-Fernandez C, Fernandez-Simon L, Alvarez A, Cascales M (1998) Necrogenic and regenerative responses of liver of newly weaned rats against a sublethal dose of thioacetamide. Biochim Biophys Acta 1384:66–78

    Article  PubMed  CAS  Google Scholar 

  • Seelig G, Simondsen R, Meister A (1984) Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem 259:9345–9347

    PubMed  CAS  Google Scholar 

  • Sies H, Akerboom T (1984) Glutathione disulfide (GSSG) efflux from cells and tissues. Methods Enzymol 105:445–451

    Article  PubMed  CAS  Google Scholar 

  • Tappel A (1978) Glutathione peroxidase and hydroperoxides. Method Enzymol 52:506–513

    Article  CAS  Google Scholar 

  • Thurston J, Hauhart R (1992) Amelioration of adverse effects of valproic acid on ketogenesis and liver coenzyme A metabolism by cotreatment with pantothenate and carnitine in developing mice: possible clinical significance. Pediatr Res 31:419–423

    Article  PubMed  CAS  Google Scholar 

  • Wong H, Fricker M, Wyttenbach A, Villunger A, Michalak E, Strasser A, Tolkovsky A (2005) Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite. Mol Cell Biol 25:8732–8747

    Article  PubMed  CAS  Google Scholar 

  • Yamano T, Shimizu M, Noda T (1998) Age-related change in cadmium-induced hepatotoxicity in Wistar rats: role of Kupffer cells and neutrophils. Toxicol Appl Pharmacol 151:9–15

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Court N, Forman J (2007) Submicromolar concentrations of 4-hydroxynonenal induce glutamate cysteine ligase expression in HBE1 cells. Redox Rep 12:101–106

    Article  PubMed  Google Scholar 

  • Zheng S, Yumei F, Chen A (2007) De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation. Free Radic Biol Med 43:444–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (30801544), National Basic Research Program Foundation of China (2006CB504704), Innovation Program of Shanghai Municipal Education Commission (09ZZ125), and Shanghai Rising-Star Program (10QH1402200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Li Ji or Zheng-Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, QN., Sheng, YC., Jiang, P. et al. The difference of glutathione antioxidant system in newly weaned and young mice liver and its involvement in isoline-induced hepatotoxicity. Arch Toxicol 85, 1267–1279 (2011). https://doi.org/10.1007/s00204-011-0664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0664-7

Keywords

Navigation