Skip to main content

Advertisement

Log in

Hepatic transcriptome and proteome responses against diethyl maleate-induced glutathione depletion in the rat

  • Toxicogenomics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Hepatic transcriptome and proteome responses against glutathione depletion were investigated by Affymetrix GeneChip Microarray and 2-dimensional gel electrophoresis (2D-DIGE), followed by MALDI-TOF–MS analysis and utilizing a glutathione-depleted rat model treated with diethyl maleate (DEM). Hepatic glutathione content decreased to 1.29 μmol/g liver (25.5% compared to control) after DEM treatment, and there were no apparent hepatotoxic signs estimated by blood chemistry examinations. A total of 247 and 213 annotated gene probe sets exhibited greater than twofold up- and down-regulation compared with controls, respectively. The up-regulated gene list contained a number of glutathione depletion–responsive genes reported previously, such as Trib3, Srxn1, Myc, Asns, Igfbp1, Txnrd1, or Hmox1, suggesting that these genes are robust mRNA biomarkers for evaluating hepatic glutathione depletion. In the 2D-DIGE analysis, proteins for a total of 361 spots were identified by MALDI-TOF–MS analysis. Of the identified proteins, 5 and 14 proteins showed up- and down-regulation, respectively. Some proteins exhibited differential expression in the protein level but not in the mRNA level, including L-FABP, MAWDBP, aldo–keto reductase family 1 member A1, catalase and ATP synthase subunit beta, suggesting that these proteins would be potential protein biomarkers for evaluating glutathione depletion. Moreover, up-regulation of FABP1 protein along with up-regulation of PPARα-regulated gene transcripts (i.e., Acot2 and Acot4) is indicative of PPARα activation, which may contribute to hepatocellular protection against glutathione depletion–induced oxidative stress. The up-regulation of L-FABP1 was detected by proteome data but not by transcriptome data, demonstrating the advantage of utilizing transcriptomics and proteomics combination to investigate glutathione depletion–induced molecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Binas B, Erol E (2007) FABPs as determinants of myocellular and hepatic fuel metabolism. Mol Cell Biochem 299:75–84

    Article  PubMed  CAS  Google Scholar 

  • Boyland E, Chasseaud LF (1967) Enzyme-catalysed conjugations of glutathione with unsaturated compounds. Biochem J 104:95–102

    PubMed  CAS  Google Scholar 

  • Burnett DA, Lysenko N, Manning JA, Ockner RK (1979) Utilization of long chain fatty acids by rat liver: studies of the role of fatty acid binding protein. Gastroenterology 77:241–249

    PubMed  CAS  Google Scholar 

  • Chanson A, Sayd T, Rock E, Chambon C, Sante-Lhoutellier V, Potier de Courcy G, Brachet P (2005) Proteomic analysis reveals changes in the liver protein pattern of rats exposed to dietary folate deficiency. J Nutr 135:2524–2529

    PubMed  CAS  Google Scholar 

  • Chen C, Hennig GE, Whiteley HE, Corton JC, Manautou JE (2000) Peroxisome proliferator- activated receptor alpha-null mice lack resistance to acetaminophen hepatotoxicity following clofibrate exposure. Toxicol Sci 57:338–344

    Article  PubMed  CAS  Google Scholar 

  • Deneke SM, Lynch BA, Fanburg BL (1985) Transient depletion of lung glutathione by diethylmaleate enhances oxygen toxicity. J Appl Physiol 58:571–574

    PubMed  CAS  Google Scholar 

  • Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, Ahr HJ (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res 637:23–39

    PubMed  CAS  Google Scholar 

  • Fernandez-Checa JC, Garcia-Ruiz C, Ookhtens M, Kaplowitz N (1991) Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress. J Clin Invest 87:397–405

    Article  PubMed  CAS  Google Scholar 

  • Fountoulakis M, Berndt P, Boelsterli UA, Crameri F, Winter M, Albertini S, Suter L (2000) Two- dimensional database of mouse liver proteins: changes in hepatic protein levels following treatment with acetaminophen or its nontoxic regioisomer 3-acetamidophenol. Electrophoresis 21:2148–2161

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Mizukawa Y, Nakatsu N, Minowa Y, Yamada H, Ohno Y, Urushidani T (2010) Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats. Toxicol Appl Pharmacol 247:211–221

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    PubMed  CAS  Google Scholar 

  • Heijne WH, Stierum RH, Slijper M, van Bladeren PJ, van Ommen B (2003) Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach. Biochem Pharmacol 65:857–875

    Article  PubMed  CAS  Google Scholar 

  • Hunt MC, Alexson SE (2002) The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog Lipid Res 41:99–130

    Article  PubMed  CAS  Google Scholar 

  • Iriyama C, Matsuda S, Katsumata R, Hamaguchi M (2001) Cloning and sequencing of a novel human gene which encodes a putative hydroxylase. J Hum Genet 46:289–292

    Article  PubMed  CAS  Google Scholar 

  • James LP, Mayeux PR, Hinson JA (2003) Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 31:1499–1506

    Article  PubMed  CAS  Google Scholar 

  • Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M, Greenblatt JF, Gerstein M (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302:449–453

    Article  PubMed  CAS  Google Scholar 

  • Jung YS, Kim SJ, Kwon DY, Kim YC (2008) Comparison of the effects of buthioninesulfoximine and phorone on the metabolism of sulfur-containing amino acids in rat liver. Biochem Biophys Res Commun 368:913–918

    Article  PubMed  CAS  Google Scholar 

  • Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4:489–499

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Hwang HJ, Baek YM, Lee SH, Hwang HS, Yun JW (2008) Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatments. Proteomics 8:2344–2361

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa N, Ito K, Sakuma K, Niino N, Kanbori M, Yamoto T, Manabe S, Matsunuma N (2004) Evaluation of glutathione deficiency in rat livers by microarray analysis. Biochem Pharmacol 68:1465–1475

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa N, Uehara T, Gao W, Omura K, Hirode M, Shimizu T, Mizukawa Y, Ono A, Miyagishima T, Nagao T, Urushidani T (2007) Identification of glutathione depletion-responsive genes using phorone-treated rat liver. J Toxicol Sci 32:469–486

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa N, Ando Y, Manabe S, Yamoto T (2009) Toxicogenomic biomarkers for liver toxicity. J Toxicol Pathol 22:35–52

    Article  CAS  Google Scholar 

  • Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129:1415–1426

    Article  PubMed  CAS  Google Scholar 

  • Lu SC (1999) Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J 13:1169–1183

    PubMed  CAS  Google Scholar 

  • Matsuda S, Katsumata R, Okuda T, Yamamoto T, Miyazaki K, Senga T, Machida K, Thant AA, Nakatsugawa S, Hamaguchi M (2000) Molecular cloning and characterization of human MAWD, a novel protein containing WD-40 repeats frequently overexpressed in breast cancer. Cancer Res 60:13–17

    PubMed  CAS  Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 187:211–217

    PubMed  CAS  Google Scholar 

  • Moon KH, Abdelmegeed MA, Song BJ (2007) Inactivation of cytosolic aldehyde dehydrogenase via S-nitrosylation in ethanol-exposed rat liver. FEBS Lett 581:3967–3972

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Zanotti F, Gaballo A (2000) The structural and functional connection between the catalytic and proton translocating sectors of the mitochondrial F1F0-ATP synthase. J Bioenerg Biomembr 32:401–411

    Article  PubMed  CAS  Google Scholar 

  • Sawada H, Takami K, Asahi S (2005) A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction mechanism and establishment of a novel in vitro screening system. Toxicol Sci 83:282–292

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Wang Y, Tu S, Li X, Sun M, Srivastava S, Xu N, Bhatnagar A, Liu S (2008) The responses of mitochondrial proteome in rat liver to the consumption of moderate ethanol: the possible roles of aldo-keto reductases. J Proteome Res 7:3137–3145

    Article  PubMed  CAS  Google Scholar 

  • Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, Kakazu Y, Ishikawa T, Robert M, Nishioka T, Tomita M (2006) Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281:16768–16776

    Article  PubMed  CAS  Google Scholar 

  • Tu S, Ren Y, Tong W, Zheng S, Xu N, Bhatnagar A, Liu S (2009) A new approach to monitor expression of aldo-keto reductase proteins in mouse tissues. Proteomics 9:5090–5100

    Article  PubMed  CAS  Google Scholar 

  • Uehara T, Hirode M, Ono A, Kiyosawa N, Omura K, Shimizu T, Mizukawa Y, Miyagishima T, Nagao T, Urushidani T (2008) A toxicogenomics approach for early assessment of potential non-genotoxic hepatocarcinogenicity of chemicals in rats. Toxicology 250:15–26

    Article  PubMed  CAS  Google Scholar 

  • van Doorn R, Leijdekkers CM, Henderson PT (1978) Synergistic effects of phorone on the hepatotoxicity of bromobenzene and paracetamol in mice. Toxicology 11:225–233

    Article  PubMed  Google Scholar 

  • Wang G, Gong Y, Anderson J, Sun D, Minuk G, Roberts MS, Burczynski FJ (2005) Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 42:871–879

    Article  PubMed  CAS  Google Scholar 

  • Weber CA, Duncan CA, Lyons MJ, Jenkinson SG (1990) Depletion of tissue glutathione with diethyl maleate enhances hyperbaric oxygen toxicity. Am J Physiol 258:L308–L312

    PubMed  CAS  Google Scholar 

  • Westin MA, Hunt MC, Alexson SE (2005) The identification of a succinyl-CoA thioesterase suggests a novel pathway for succinate production in peroxisomes. J Biol Chem 280:38125–38132

    Article  PubMed  CAS  Google Scholar 

  • Wetmore BA, Merrick BA (2004) Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol 32:619–642

    Article  PubMed  CAS  Google Scholar 

  • Wolfrum C, Borrmann CM, Borchers T, Spener F (2001) Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha- and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci USA 98:2323–2328

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Zhang X, Yu C, Lu G, Chen S, Xu L, Ding W, Shi Q, Li Y (2009) Proteomic analysis of hepatic ischemia/reperfusion injury and ischemic preconditioning in mice revealed the protective role of ATP5beta. Proteomics 9:409–419

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Kikkawa R, Yamada H, Horii I (2006) Investigation of proteomic biomarkers in in vivo hepatotoxicity study of rat liver: toxicity differentiation in hepatotoxicants. J Toxicol Sci 31:49–60

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Kang B, Tan X, Bai Z, Liang Y, Xing R, Shao J, Xu N, Wang R, Liu S, Lu Y (2007) Comparative analysis of the protein profiles from primary gastric tumors and their adjacent regions: MAWBP could be a new protein candidate involved in gastric cancer. J Proteome Res 6:4423–4432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Kazuyoshi Kumagai, Yuji Saito, and Takashi Yamaguchi for their technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Kiyosawa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamauchi, S., Kiyosawa, N., Ando, Y. et al. Hepatic transcriptome and proteome responses against diethyl maleate-induced glutathione depletion in the rat. Arch Toxicol 85, 1045–1056 (2011). https://doi.org/10.1007/s00204-010-0632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0632-7

Keywords

Navigation